
TUTORIAL

Tutorial

Contents

1 Introduction 4

2 A simple system 7

3 PragmaDev Specifier Tutorial 8
3.1 Organization . 8
3.2 Requirements . 9
3.3 Design . 13
3.4 Simulating the system . 27

3.4.1 Simulation options . 27
3.4.2 Bytecode generation . 27
3.4.3 The SDL simulator . 29
3.4.4 Verifying the behavior . 38

3.5 Prototyping GUI . 40
3.5.1 GUI editor . 40
3.5.2 Simulation . 44

3.6 Conclusion . 45

4 PragmaDev Studio 46
4.1 Testing . 46

4.1.1 Test case . 46
4.1.1.1 Declarations . 49
4.1.1.2 Ports . 50
4.1.1.3 Templates . 51
4.1.1.4 Core test case . 51
4.1.1.5 Control part . 52

4.1.2 Simulation against the SDL system 52
4.2 Code generation . 55

4.2.1 Code generation options . 55
4.2.2 Graphical debugging . 58

4.3 Validation . 62
4.4 Conclusion . 70

5 PragmaDev Developer Tutorial 71
5.1 Organization . 71
5.2 Requirements . 72
5.3 Design . 77
5.4 Running the system . 95

5.4.1 Generation profile . 96

PragmaDev Studio V6.0 Page 2

Tutorial

5.4.2 Compilation errors . 99
5.4.3 The SDLRT debugger . 104
5.4.4 Verifying the behavior . 113

5.5 Prototyping GUI . 115
5.5.1 GUI editor . 115
5.5.2 GUI simulation . 119

5.6 Conclusion . 120

6 Automatic documentation generation 122
6.1 Publications . 122
6.2 Documentation . 127
6.3 Automatic generation . 132

PragmaDev Studio V6.0 Page 3

Tutorial

1 Introduction

Before starting this tutorial, it is important to understand the basic concepts used in
PragmaDev Studio.These concepts derive from the two languages supported by Prag
maDev Studio, SDL and SDLRT:

• SDL stands for Specification andDescriptionLanguage. SDL is a graphical, object
oriented, formal languagedefinedby the International TelecommunicationUnion
Telecommunication Standardization Sector (ITUT) as recommendation Z100.
The language is intended for the specification of complex, eventdriven, realtime
and interactive applications involving many concurrent activities that communi
cate using discrete signals.

• SDLRT stands for Specification and Description Language Real Time. It is a
mix of SDL with another graphical language, UML, and of a textual language, C.
It retains the graphical abstraction brought by SDL while keeping the precision
of traditional techniques in realtime and embedded software development and
making simpler the reuse of legacy code by using natively the C language. The
objectorientation is also pushed a step further by using the UML diagrams.

The underlying concepts of both languages are the same: the overall application to de
velop is called the system. Anything that is outside the system is called the environ
ment. The system itself is described via four complementary and consistent views:

• Architecture
A system can be decomposed in functional blocks. A block can be further de
composed in subblocks and so on until the functionality of the final blocks are
simple enough. A block then fulfils its functionality with one or more processes,
communicating with each other via messages (also called signals). A process
is basically a task and has an implicit message queue to receive messages from
other tasks. There is no need to define it. A block has no direct implementation in
the final application; it is a matter of organizing and structuring the application.
Blocks and process are called agents.

system

block

block

process

process

state

msg

state

msg

state

process

PragmaDev Studio V6.0 Page 4

Tutorial

• Communication
Agents exchange messages through channels. Messages going through channels
are listed to define the interface between the agents. When it comes to final code
on the target, channels have no direct implementation; they are only used for
structuring the software and defining the interfaces.

• Behavior
Aprocess behavior is described graphically as a finite statemachine. Internal pro
cess states, events (messages), decisions, timer manipulations, semaphore ma
nipulations have specific symbols briefly summarized below necessary to under
stand the following tutorial:

Start Start timer

State Stop timer

Input

Output

Take semaphore (∗)

Give semaphore (∗)

Plain code Create process instance

Decision Declarations

(∗) SDLRT only

SDL or SDLRT procedures can be called within the process behavior description. In
SDLRT, C functions can be called as well; SDL also allows the call of C function via
external operators or procedures.

• Data and syntax
This is where SDL and SDLRT differ the most:
– In SDL, data is defined via ADT (Abstract Data Types), using specific con

cepts and notations. The data manipulation has also a specific syntax, de
rived from languages such as Pascal.

– In SDLRT, the C language is used to define and manipulate data, making
things more familiar to developers.

Another SDLRT specificity is the integration of UML use case and class diagrams for
less timecritical parts of the system. Objects can be associated to processes or blocks

PragmaDev Studio V6.0 Page 5

Tutorial

and used in the behavioral parts of the processes.
In both SDL and SDLRT models, PragmaDev Studio also integrates the Message Se
quence Chart dynamic view. On such a diagram, time flows from top to bottom. Life
lines represent agents, semaphores or objects and key events are represented. The di
agram emphasizes the sequence in which the events occur.
The two languages have each their specific domain of usage:

• SDL will be mainly used during the specification phase. Being formal, it also al
lows more possibilities of verification and testing.

• SDLRT will be mainly used in the development phase, since it is closer to the
hardware on which the software will eventually run.

In addition to the full features PragmaDev Studio, there are also two variants of the
tool that focus on each of this languages: PragmaDev Specifier for SDL modelling, and
PragmaDev Developer for SDLRT modeling.
Would you need any extra information on the diagrams and their meaning, the follow
ing references may be used:

• For SDL, the SDL Forum website has many tutorials and presentations:
http://www.sdlforum.org/

• For SDLRT, the reference manual is available in PragmaDev Studio via theHelp
/ SDLRT reference menu. This manual is also available on the SDLRT website:
http://www.sdlrt.org

PragmaDev Studio V6.0 Page 6

Tutorial

2 A simple system

The systemwe have chosen is simple enough to be written from scratch but rich enough
to pinpoint the basics of SDLRT and SDL. It is a very basic phone system composed of
a central and of several phones. When the phones are created, the central gives them
an automatically computed phone number. When a user takes a phone to call another
one, the phone asks the central the id of the phone to be called identified by its phone
number. The caller sends directly a call request to the distant phone. For simplicity
sake the distant phone automatically answers.
This tutorial is divided into two parts, depending on the tool you will be using, or on the
modelling language if you’re using PragmaDev Studio:

• The tutorial for PragmaDev Specifier describes SDLmodelling and starts on page
8.

• The tutorial for PragmaDev Developer describes SDLRTmodelling and starts on
page 71.

The last part of this tutorial describes the automatic documentation generation (page
122). It is based on the SDL system but that can be applied to the SDLRT example, and
therefore will work in both variants of the tool.
If you do not want to design the example, you can find a complete project of this system
in the examples under "Specifier/Tutorial" and ’Developer/Tutorial’.

PragmaDev Studio V6.0 Page 7

Tutorial

3 PragmaDev Specifier Tutorial

3.1 Organization

Let’s get our hands on the tool! Start PragmaDev Specifier (or PragmaDev Studio if
this will be the application you will be using). The window that appears is called the
Project manager:

The Project manager window

The project manager gathers all the files needed in the project. First let’s create a new

project with the New project button:

PragmaDev Studio V6.0 Page 8

Tutorial

A window will pop up to set the project file name. Use the ’Browse’ button to select the
project’s parent folder and name it "phone":

Click OK to create the project and open it:

Phone empty project

3.2 Requirements

Let us express the requirements of our system with a Message Sequence Chart (MSC).
To add an MSC, select the project, and click on the right mouse button. A contextual
menu will appear:

Add components to the project
Select Add child element and the following window will appear:

PragmaDev Studio V6.0 Page 9

Tutorial

The add component window
In Requirements, selectMSC element and click on theNew button. Go to the directory
where your project is and type in "normal" with no extension. Click on save and you
will get the following window:

Completed Add component window
Click Ok and the "normal" MSC appears in the "phone" project:

"normal" MSC in "phone" project

PragmaDev Studio V6.0 Page 10

Tutorial

Double click on the MSC name or icon to open it. The MSC editor opens:

The MSC editor

PragmaDev Studio V6.0 Page 11

Tutorial

Draw the following to express the requirements of our phone system:

The "normal" MSC
You will have to use the tool bar on the left. If you have any problem refer to the user’s
manual.
This MSC basically says the following:

• pCentral indicates the system has been initialized and is ready
• The initial global state is Disconnected

PragmaDev Studio V6.0 Page 12

Tutorial

• The user represented as the environment (RTDS_Env) makes a request on the first
phone pLocal to call the phone with the number 2

• The first pLocal asks the central the queue id of the phone with number 2
• The first pLocal uses the id to send a connect request (sCnxReq) to the second
pLocal

• The second pLocal being disconnected, it confirms the connection (sCnxConf)
• The first pLocal tells the environment the call has succeeded
• The global system state is then considered Connected
• The user hangs up
• The first pLocal sends a disconnection request (sDisReq) to the second pLocal
• The second pLocal confirms disconnection (sDisConf) back to the first pLocal
• The first pLocal tells the environment the disconnection is confirmed
• The overall final state is back to Disconnected

You can write some other MSCs to get clearer ideas on what you want to do. Note the
instances represented on the MSC can be any type of agent. Somehow you are roughly
defining the first architectural elements. You can copy from the SDL/Tutorial example
the "normal" and "busy" MSCs in the project to complete the description.

3.3 Design

Let us now specify and design the system. As for creating an MSC, select Add child
element on the project, then the Active architecture category in the dialog, and select
System component. Note that the dialog will this time require to set a modelling lan
guage for the diagram. Choose SDL Z100:

PragmaDev Studio V6.0 Page 13

Tutorial

After validating the dialog, the system appears in the project:

"Phone" SDL system in the "Phone" project
Double click on the system name or icon to open the system diagram in the SDL editor:

The SDL editor
The system will be divided into two main parts:

PragmaDev Studio V6.0 Page 14

Tutorial

• The definition of the data types and messages we will use.
• The architecture in terms of processes.

To avoidmixing things, wewill use partitions in the diagram. A partition is just ameans
to separate different kind of contents within a diagram; it is just a group of pages that
can contain any symbol allowed in the diagram.
PragmaDev Studio has created the first partition for us, so let’s use it to declare the
types and messages we’ll need:

Declarations in the "Phone" system
You actually don’t need to type the declarations completely, since PragmaDev Studio
provides a way to directly insert skeletons for all kinds of declarations. To insert a
skeleton, open the symbol text for modification, then rightclick in the text box. The
following menu appears:

PragmaDev Studio V6.0 Page 15

Tutorial

After selecting the declaration kind, the skeleton is inserted in the symbol text:

The parts that need to be specified are surrounded by "~" characters and colored in gray.
Here, the constant name, the type name and the value have to be specified.
Here are the data and types we need:

PragmaDev Studio V6.0 Page 16

Tutorial

• Thesynonymdeclaration ("Synonym(constant)" in the "Insert declaration"menu)
declares a constant for the maximum number of phones;

• The syntype ("Syntype (constrained type)" in the "Insert declaration"menu) dec
laration declares a special type for the phone. This is basically an integer restricted
to be between 1 and the maximum number of phones;

• The newtype declaration declares the type for the array of phone processes ("’Ar
ray’ type (associative array)" in the "Insert declaration" menu) ; the index is a
phone number, and the value is a PID, which is a basic type in SDL, just as Inte-
ger.

The second declaration text box declares the signals that will be used in the system.
They are mainly the ones we used in the MSC we created earlier, plus a few ones for
error conditions. Three of the signals we declare have parameters: sCall, sGetId and
sId. Note the sCall and sGetId signals use the PhoneNumberType type we’ve declared
above.
Declaration skeleton insertion is not provided for signals, but PragmaDev Specifier will
offer to autocomplete your code as you type. So for example, when declaraing the
sCall signal, if you start to type the signal parameter type, a list will appear under your
text cursor listing all known types that start with the text you’ve already typed:

You can select one of the choices by using the up and down arrow keys, or by clicking
on it in the list. Note that entities defined in a symbol are known only when the symbol
has been validated, and if its syntax is correct.
Now let’s design the architecture of the system. As we said, we’ll use another partition,
so let’s create it first, using the new partition button in the partition toolbar:

A new empty partition appears. What you’ve already done is of course not lost: you can
go back to it using the other buttons in the partition toolbar.
The system being very simple it will not require any block decomposition. The central
will be a process as well as the phones. All the phones have the same behavior so they
will be several instances of the same process. The phone system is therefore made of
two processes. For better legibility their name will be prefixed with a "p" because they
are processes:

PragmaDev Studio V6.0 Page 17

Tutorial

phone system view
Notes:

• This architecture is not strictly correct in regular SDL, since processes should not
appear directly at system level. But PragmaDev Studio allows it, so let’s keep
things simple.

• To draw the cSelf channel keep the shift key down and click where the channel
should break. To change the position of the channel name, click on a segment,
rightclick on it and select Set as text segment in the contextual menu.

• Signals and theNUM_PHONE constant have already beendeclared, andprocess names
appear in the MSC. So their names will be autocompleted by PragmaDev Studio.

Since pCentral is making the link between the pLocal processes and considering the
number of phones can be modified, pCentral will create all instances of pLocal. To
represent that, the name pLocal is followed by the initial number of instances and the
maximum number of instances we defined in the synonym in the other partition.
Messages to be exchanged between the processes are listed in the channels . To
specify the incoming and outgoing messages in the diagram double click on the "[]"
and type in between the square brackets. The channel going to the outer frame is im
plicitly connected to the environment. In the above example the channel cEnvLocal
connects pLocal to the environment and defines sCall and sHangUp as incomingmes

PragmaDev Studio V6.0 Page 18

Tutorial

sages and sCallConf, sBusy and sHangUpConf as outgoing messages. The channel
cEnvCentral connects pCentral to the environment and defines sReady as an outgo
ing message. The cSelf channel has been created to represent messages exchanged
between the different instances of pLocal.
Select pLocal and click on the right mouse button to open the process definition, or
simply click on the button that appears when you hover the mouse pointer over it:

Contextual menu
Since the process is not in the project, it will be asked what type of element must be
added. Keep the preselected options, Process element in Behavior and click OK.
A new window opens, showing the process definition. As for the system, the first parti
tion has been automatically created:

PragmaDev Studio V6.0 Page 19

Tutorial

The process behavior description in SDL editor
The first thing to design is the start transition. It is what the process will do as soon as
it is created. In the case of pLocal process, we do nothing:

That transition means that once the process is started it will go to state Idle. Place a
start symbol , keep it selected and click on the state symbol in the tool bar . The

PragmaDev Studio V6.0 Page 20

Tutorial

state symbol is automatically inserted and connected after the start symbol. An internal
data dictionary is updated on the fly to ease the writing of the process behavior. First
create the Idle state definition: click on the State icon and put it in your diagram:

The state name is in edit mode so you can directly type Idle in it; but you may also use
autocompletion to list the available choices for the state symbol.
Once the state has been defined, click on the input symbol in the tool bar and the
input message symbol will be automatically inserted below the state symbol. When you
start typing, a list of all available messages will appear:

Select the sCall message and complete it with the correct parameter. This facility is
context sensitive and works for almost everything: SDL keywords, agents, channels,
signals, states, types, variables, timers, You can now finish the state description by
yourself as explained below.
Considering the requirements described earlier, the pLocal process can either be asked
to make a call by the operator or receive a call from another phone. The Idle state can
therefore receive two types of messages described below:

PragmaDev Studio V6.0 Page 21

Tutorial

When receiving sCnxReq message, it will reply sCnxConf to the sCnxReq sender. To
and sender are SDL keywords in the output symbol. The sender id is stored in the
remotePid variable. The process then goes to Connected state.
If asked to make a call, the phone number to call needs to be retrieved. To do so, a
variable of the correct type is given as parameter of the receiving message. It will be
assigned when this message is received. Since pLocal has no idea how to address a
phone number it asks the central process the process id of the called pLocal with the
sGetId message. The calledNumber variable is reused as is. No receiver is specified
since the receiver process is completely determined by the system architecture. We
may however have used TO pCentral to specify it, or even to parent since pLocal
was created by pCentral. The process then goes to GettingId state, waiting for the
central to answer.
Once the pid of the remote phone is received from the central, it is stored in a local
variable and the connection request message sCnxReq is sent. The process then goes
into state Connecting. If the pid of the receiver was not found, the sError signal is
received. A sBusy message is sent back to inform the user and the process goes back
into state Idle:

Note the receiver for the sBusymessage is specified by using VIA cEnvLocal. It means
that the signal will be sent to the process at the other end of the channel cEnvLocal,
connected to the process pLocal in the system diagram:

PragmaDev Studio V6.0 Page 22

Tutorial

Since this channel is connected to the system’s external frame, the signal will go to the
environment. Please note specifying a receiver for sBusy is necessary here, since this
signal may be sent not only to the environment, but also to the other pLocal processes
in the system. If a receiver is not specified, the SDL semantics is to choose randomly a
receiver among the available ones, so the signal may have been received by the wrong
process.
Once the connection request has been sent, the remote process is either available and
replies sCnxConf, or not available and replies sBusy:

Depending on the answer the resulting state is different.
Now that you have understood the basics of the finite state machine you can complete
the process behavior:

PragmaDev Studio V6.0 Page 23

Tutorial

As the description is done, the browsing window on the right side is updated allowing to
quickly jump to a transition: just click on the transition. This is especially useful when
the system gets big.

It is now time to declare variables in our process. To do so, the text symbol in the
process behavior diagram is used. The declarations are introduced via the keyword
DCL, followed by a list of couples <variable name> <variable type>, with an optional
default value:

Just as for types, a skeleton for the declaration can be inserted via the contextual menu
(entry ’Variables’ in the ’Insert declaration’ submenu). Note the type of the variable
used in the input and output symbols for sCall and sGetId are not strictly the ones ap
pearing in the definition: the signal declares a PhoneNumberType, but we use a regular
Integer. This is no problem as long as the Integer satisfies the conditions set on the
PhoneNumberType type.
Let’s have a look at process pCentral now. It must do the following things:

• At startup, it creates all instances of pLocal and gives them a new phone number.
• When asked for a phone number, it sends back the pid for the corresponding pro
cess.

PragmaDev Studio V6.0 Page 24

Tutorial

Go to the system diagram Phone, and open pCentral (via the contextualmenu or the
button). Since the process is not in the project, it will ask if it should be added. Answer
Yes and a prefilled Add child element window with the process name appears. Click
OK and the process definitionwindow appears. Let’s first write the needed declarations
and the initial transition:

The variables include an index which will be used as the phone number for created
pLocal’s, and an array mapping the phone number to the pid.
The initial transition creates all instances of pLocal within a loop testing index <=
NUM_PHONE. Each time the loop is executed the pLocal process is created and its
process id (offsrping keyword for the parent process) is stored in the pLocals array,
using the phone number as index.
After the pLocal processes creation, the sReady signal is sent to the environment to
indicate initialization is finished and the process goes to state Idle.
Note we have voluntarily introduced an error by typing ";" instead of "," at the end of
the first line in the lowest block of code to later show how to analyze the errors.

PragmaDev Studio V6.0 Page 25

Tutorial

The only request that can be received by pCentral process is sGetId. The phone num
ber to reach is the parameter passed to the signal, which we will receive in the index
variable. The process id of the phone is extracted from the array and sent back directly
to the sender of the sGetId message (SDL keyword sender). If the phone number is
out of range, an error message is sent back to the sender.

PragmaDev Studio V6.0 Page 26

Tutorial

3.4 Simulating the system

Now that the system has been designed, we’ll debug it using PragmaDev Studio’s SDL
simulator. The simulation process is divided into two main phases:

• First, the code for all transitions in all system’s processes is transformed into an
internal representation called SDL bytecode. This language is used only inter
nally and has no direct external representation.

• The generated bytecode is then executed based on a schedulingmanagedbyPrag
maDev Studio model debugger. The simulation conforms to the SDL semantics:
all transitions are executed in no time and cannot be interrupted.

3.4.1 Simulation options

The Simulation options and the code generation options are edited via theGeneration/
Options... menu. By default a valid simulation profile is listed as well as an empty code
generation profile:

As the simulation profile is the only valid debug profile, it will be used by PragmaDev
Studio by default.

3.4.2 Byte-code generation

Select the Phone system in the project manager and click on the Execute quick button

in the tool bar:
A log window opens and displays the actions performed by the bytecode generator.
Before actually generating anything, PragmaDev Studio performs a global syntax and
semantics check on the written code. So any basic error such as typing mistakes or
misspelling in variable names will be reported during this phase.
Since we introduced an error in process pCentral, this is what appears in the bytecode
generator log window:

PragmaDev Studio V6.0 Page 27

Tutorial

The bytecode generation started at system level, then went down in pCentral. During
the generation for pCentral’s start transition, the inversion between ";" and "," was
encountered. So the generation stopped and this error message was displayed.
Double clicking on the error automatically opens the SDL editor and selects the symbol
where the error occurred:

Once the error have been corrected the log window should look like this:

PragmaDev Studio V6.0 Page 28

Tutorial

3.4.3 The SDL simulator

Once the bytecode generation is over, the SDL simulator window opens automatically:

The SDL simulator window

PragmaDev Studio V6.0 Page 29

Tutorial

The simulator window shows a global state of the running system in terms of:
• Running processes
• Sent messages
• Started timers
• Local variables when in the context of a running process
• Watched variables, allowing to see the value of any variable at any time

The lower part of the window is a shell where actions taking place in the system will be
reported.
Let’s first run a MSC trace so that we can see graphically what is happening in the sys

tem. Click on the Start MSC trace quick button: AMSC Tracer window appears.

Now let’s actually start the system by clicking on the Run the system quick button:
Let the system run until all pLocal processes are created by pCentral and their start
transition executed:

PragmaDev Studio V6.0 Page 30

Tutorial

Note you can detach the execution buttons bar by dragging it away from its header (the

zone looking like this: if you don’t see it, go to the preferences in the "Studio" menu
of the project manager, and check the option "Detachable toolbars" in the "General"
tab):

Detached execution buttons toolbar
The environment is represented by the pseudoprocess RTDS_Env. This is not really a
process as it does not appear in the list of running processes in the simulator window
and has no code associated. It is only used to trace messages sent from and received by
the environment.

PragmaDev Studio V6.0 Page 31

Tutorial

Process pCentral dynamically creates 5 instances of pLocal, sends the sReady mes
sage to the environment and goes to state Idle. Each pLocal instance then go to state
Idle. On the left is the value of the system time. According to SDL semantics, all start
transitions executed in no time, so the system time is still 0 after all processes have
started.

Click on the Stop button to break execution:
The SDL simulator window shows the list of all running processes, displaying for each
one its name, process id, number of messages in its message queue and SDL state:

SDL simulator window
Now let’s put a breakpoint in process pCentral:

• Open pCentral from the project manager, or by doubleclicking its name in the
instance list in the simulator window.

• Go to the transition for signalsGetId in stateIdleusing the state/message browser:

or the Viewmenu:

PragmaDev Studio V6.0 Page 32

Tutorial

The state/ message browser and the View/ Go tomenu allow to quickly navigate
among the transitions defined in the process. Selecting the transition will auto
matically open the partitionwhere the transition is and scroll to the corresponding
signal input symbol.

• Click on the signal output symbol just after the decision’s true branch:

PragmaDev Studio V6.0 Page 33

Tutorial

• Click on quickbutton or go toDebug / Set breakpointmenu in the SDL editor.
A breakpoint symbol is displayed on the side of the selected symbol:

We will now simulate an incoming message from a user:
• Go to the SDL Simulator and click on "Send an SDL message to the running sys

tem" quickbutton
• The Send an SDL message window shows up:

Send an SDL message window

On the left are listed all possible receiving processes, in the middle all possible mes
sages, i.e. all messages used in the SDL system, and on the right the value of the pa
rameters associated with the selected message. Clicking on either the message or the
receiver will restrict the other list to show only the consistent choices. Here, we want
to send a sCall signal, so let’s select this signal in the list:

PragmaDev Studio V6.0 Page 34

Tutorial

Since process pCentral cannot receive signal sCall, it disappears from the list of avail
able receivers.

• Now let’s select the signal receiver and input the called phone number, which
should be passed as a parameter to the sCall signal:

The signal parameters are described in the right part of the signal send window.
Double click on the parameter to edit its value and hit <Enter>.

• Click the Send & close button.
• Resume system execution by clicking the Run button in SDL simulator window.
• The following actions appear in the MSC trace:

PragmaDev Studio V6.0 Page 35

Tutorial

• When the breakpoint is hit: the SDL editor then pops up and displays the symbol
where the execution has stopped:

• Since we are in the context of a running process, local variables are automatically
displayed in the SDL simulator window. All complex variables such as structs or
arrays can be expanded to show their contents. Here are the local variables with
the pLocals array expanded:

You can see the value for index is 2, so the value sent with the sId message will
be the pid stored at index 2 in pLocals, i.e. 3.

• You can also execute instructions line by line in the symbols by using the Flat step

quickbutton:

(NB: you may have to click on the button twice to go to the next state)
The signal send has been done, as shown in the MSC trace:

• Let’s now finish the system execution by pressing the Run button once more.
• When the signal sCallConf has been received by RTDS_Env in theMSC trace, stop

system execution with the button
The SDL states for all running processes are updated in the simulator window:

PragmaDev Studio V6.0 Page 36

Tutorial

• The SDL state of a process can be dynamically changed using the contextualmenu
in the process list:

Some caution is required with this feature, since it may have unexpected results
on the system behavior...

• We will now disconnect the two connected pLocal processes by sending another

signal. So press once more:

This will send a sHangUp signal to the first pLocal (the receiver for our sCall mes
sage) with no parameters.

• Send the message with the Send & close button.
• We saw that stepping could be done at code line level. There are other step levels
including:

– Step at SDL event level with button
This button will step one SDL event at a time. Click on it while looking at the
MSC trace; you’ll see that each time a SDL event happens (signal send, signal
receive, process creation, timer start, and so on...), the system execution
stops just after the event.

– Step at transition level with button

PragmaDev Studio V6.0 Page 37

Tutorial

This buttonwill execute a whole transition and stop just after its end (usually
the next state symbol). Click on it while looking at the MSC trace; you’ll see
the active process execute all actions in current transition up to the state
change, and the system execution stops.

3.4.4 Verifying the behavior

We will now check if the behavior is the one we expected in the first place. To do so we
will use the MSC diff feature.

• Make sure the execution is over by clicking button a last time. Then go to the
MSC trace window, save the trace and close it.

• Close the simulator window.
• In the project manager, open the trace diagram.
• Go to the Diagram / Compare with other diagram... menu to get the MSC Diff
configuration window and set it up as described below:

The first MSC is the trace and the second is the normal scenario we described in
the first place. Since the normalMSCwas not supposed to be thoroughly detailed
we will only show and compare messages without considering their parameters.
Click OK; the following window appears:

PragmaDev Studio V6.0 Page 38

Tutorial

It allows navigation through the differences between the MSCs. By selecting All,
then all the differences will be shown in the diagram:

The only differences between theMSCs are the dynamic task creation of the pLocal
instances. After that the exchange of messages are the same between the dynamic
trace and the specification. The SDL system therefore conforms to the normal
MSC specification.

This is the end of this very simple SDL simulation session. There are many areas that
have not been covered, such as timers, procedures, external operators, system queue
manipulations, watched variables, and so on... You may discover all these features
yourself using the examples delivered in PragmaDev Studio distribution or by designing
your own system.

PragmaDev Studio V6.0 Page 39

Tutorial

3.5 Prototyping GUI

PragmaDev Studio has a built in support to design simple prototyping interface to ease
testing. We will build a very simple one for our phone system to demonstrate its capa
bilities.

3.5.1 GUI editor

Add a Prototyping GUI node in the project (category Testing / Validation in the Add
child element dialog) and open it:

The left panel contains the incoming triggers for the GUI, the central panel the GUI
itself, and the right panel the outgoing message from the GUI:

PragmaDev Studio V6.0 Page 40

Tutorial

Let’s add 2 buttons and one LED:

PragmaDev Studio V6.0 Page 41

Tutorial

Change their display value in the central panel and their widget name in the right panel
in order to recognize them:

Let’s say that when the user clicks on the "Call John" button, the GUI sends an sCall
message with parameter set to "2". Select the CallJohn widget on the right panel and
right click:

All the available messages in the system are then listed. Select sCall and expand the
created subtree. The parameters are listed with their corresponding type:

PragmaDev Studio V6.0 Page 42

Tutorial

Let’s say the parameter value is ’2’ and let’s send sHangUpwithout any parameter when
clicking on Hangup:

On the left panel now, we will add a new trigger. A trigger performs some action on
the widgets whenever a message is sent out of the system. Select the top of the tree and
right click to get a list of all the possible triggers:

Let’s add the sCallConf trigger. When a trigger is received by the GUI, a case with a
set of filters is verified. Let’s add a new case:

In our case we won’t put any filter, we will just change the color of the LED:

PragmaDev Studio V6.0 Page 43

Tutorial

The default action is DISPLAY; you’ll have to right click on it to change it to CHANGE_-
COLOR. The node in the tree under the action specifies the new color for the widget. It
is possible to directly name the basic colors, otherwise the RGB hexa code can be used
(e.g #FF8000 is this color). Let’s put the LED back to red when we receive a HangUp
confirmation and we’re done:

3.5.2 Simulation

Let’s start the Simulator again and click on the Start prototyping GUI quick button:
The GUI will start and connect automatically to the system:

PragmaDev Studio V6.0 Page 44

Tutorial

Start anMSC trace and run the system. Click on the "Call John" button, that should send
the sCallmessage with parameter value set to 2, the sCallConf should be received by
the GUI, and the LED should be set to green:

In practice, this is not a good example because there are a lot of different pLocal pro
cesses that could receive the messages sent by the GUI so the receiver is randomly se
lected.
For a more advanced GUI, please have a look at the AccessControl system in the Spec
ifier example directory.

3.6 Conclusion

During this tutorial we have been through:
• SDL,
• Project manager,
• SDL architecture & behavioral editors,
• MSC editor,
• SDL simulation including three stepping modes:

– SDL code line,
– SDL event,
– transition,

• Conformance checking,
• Prototyping GUI.

As a result, you saw that SDL is perfectly suited to describe highlevel specifications
for real time systems. Its complete description covering architecture, behavior and ab
stract data types allows you to fully describe your system independently from the target
implementation such as the processor, the RTOS or even the implementation language.
The following chapter will explore some PragmaDev Studio specific features such as
testing and code generation.

PragmaDev Studio V6.0 Page 45

Tutorial

4 PragmaDev Studio

This chapter follows the PragmaDev Specifier Tutorial part. Please follow the previous
chapter before continuing.

4.1 Testing

PragmaDev Studio supports TTCN3 standard testing language for edition and simu
lation. We will build up a small test case and run it on the phone system we have just
designed. Let’s add a TTCN3 compoment to the project (category Testing / Validation
in the Add child element dialog) and name it TestPhone:

4.1.1 Test case

The text editor recognizes the TTCN3 syntax so all the keyword will be highlighted.
Here is the test suite we will explain in the following paragraphs:

PragmaDev Studio V6.0 Page 46

Tutorial

To see aMSC representation of theTTCN3 tescase behaviour, click on the View graphical

representation button:

PragmaDev Studio V6.0 Page 47

Tutorial

You can select the functions and test cases you wish to visualise. In our simple case we
will generate everything:

PragmaDev Studio V6.0 Page 48

Tutorial

This MSC representation is not editable.
Since TTCN aims at testing complex systems, it is strongly structured. We first need
to define the data types we will be using in our test case, define the interfaces with the
system, and the value templates that will be exchanged.

4.1.1.1 Declarations

The messages exchanged between the system and the environment are the ones listed
in the channels connect to the frame of the system. Most of the message exchanged
with the system have no parameters except sCall. sCall takes an integer subtype as a
parameter we will redefine here:

PragmaDev Studio V6.0 Page 49

Tutorial

// Data types
type integer PhoneNumberType (1..5)

There is no message or signal specific type in TTCN: if the message has parameters it is
defined as a record, and if it has no parameters, it is defined as an enumerated with a
single possible value. Just as in symbols, skeletons for all kinds of declarations can be
inserted in the TTCN file via the contextual menu, submenu ’Insert declaration’, then
the declaration kind:

• "’enumerated’ type (enum)" for enumerated types;
• "’record’ type (struct)" for records.

Here are the TTCN declarations to create:

// The messages
type record sCall {
PhoneNumberType param1
}

type enumerated sHangUp { e_sHangUp }
type enumerated sBusy { e_sBusy }
type enumerated sCallConf { e_sCallConf }
type enumerated sHangUpConf { e_sHangUpConf }
type enumerated sReady { e_sReady }

4.1.1.2 Ports

TTCN3 can test asynchronous systems, synchronous systems, or a combination of
both. In our tutorial example only asynchronous messages are exchanged with the sys
tem. We will define a port for each channel in the system representing the 2 interfaces:

// The ports
type port cEnvLocal_type message {
out sCall;
out sHangUp;
in sBusy;
in sCallConf;
in sHangUpConf
}

type port cEnvCentral_type message {
in sReady
}

Just as for other declarations, a skeleton for a port type can be inserted via the contex
tual menu, then "Insert declaration", then "Port type for asynchronous messages".
Wewill now define the component wewill be testing, that is the system itself. The name
of the component must be the name of the SDL system.

PragmaDev Studio V6.0 Page 50

Tutorial

// The SUT - System Under Test
type component Phone {
port cEnvLocal_type cEnvLocal;
port cEnvCentral_type cEnvCentral;
};

A skeleton for a component type definition can be inserted via the contextual menu,
then "Insert declaration", then "Component type".

4.1.1.3 Templates

When exchanging messages with the system, the values of the parameters of the mes
sages must be predefined. These values are called templates. Templates are used to
both:

• define the values of the outgoing messages parameters,
• to verify the values of the received messages parameters are correct.

In our phone example, the messages coming from the system do not have any parame
ter, only the sCall message has one parameter. Still we need to define templates for all
the message we will exchange with the system.

// Templates definitions
template sReady SystemIsReady := ?;
template sCallConf CallConf := ?;
template sBusy Busy := ?;
template sCall John := { param1 := 2 };

The John template will set the parameter of sCall to ’2’.

4.1.1.4 Core test case

The core test case is the execution part, the scenario itself. To make it simple, we will
first wait until the system sends the ready message on the cEnvCentral port, then we
will call John and wait for the answer. An alternative is created: the call is confirmed
and we will consider the test pass, or John is busy and we will consider the test fail:

// the test cases
testcase tc_callJohn() runs on Phone
{
cEnvCentral.receive(SystemIsReady);
cEnvLocal.send(John);
alt

{
[]cEnvLocal.receive(CallConf)

{
setverdict(pass);

PragmaDev Studio V6.0 Page 51

Tutorial

}
[]cEnvLocal.receive(Busy)
{
setverdict(fail);
}

}
}

A skeleton for a testcase definition can be inserted via the contextualmenu, then "Insert
declaration", then "Testcase". Note that the skeletonwill also include a "system" clause
that we are not using here, so it can just be deleted.
For the testcase body, it is also possible to insert a skeleton for the ’alt’ block using the
contextual menu, then "Insert statement", then "’alt’ statement".

4.1.1.5 Control part

The control part is what will be executed, this is where you combine which test case you
would like to run on the system. Please note there might be a different verdict for each
test case. This won’t stop the execution of the control part. In our tiny example we will
just run the unique control part we wrote:

// The control part
control{
var verdicttype verdict1;
verdict1 := execute(tc_callJohn());

}

We’re done with our test case, let’s now run the test on the system and see what it does.

4.1.2 Simulation against the SDL system

Select the test suite in the project manager and click on the Execute button. In addition
to the PragmaDev Simulator, the following window will open:

PragmaDev Studio V6.0 Page 52

Tutorial

Please note it is possible to set breakpoints in the test case as well as in the SDL system.
Start an MSC trace, select the control part, and Run. The scenario will execute by itself
and the verdict is displayed in the shell and in the MSC trace:

PragmaDev Studio V6.0 Page 53

Tutorial

Because there are several instances of pLocal, it might happen that one of them calls
itself during the test case, causing it to fail. In that case, run the scenario again for the
test to pass.

PragmaDev Studio V6.0 Page 54

Tutorial

4.2 Code generation

4.2.1 Code generation options

It is possible to generate C code out of the SDL system in order to implement it on a
real target. For this chapter, we will use our host computer as a target, and for that we
will need a compatible debugger. MinGW is automatically installed on Windows and
a compatible gdb version for Linux is available in the distribution. Please refer to the
installation manual for further information.
The generation profiles are listed in Generation/ Options...

The directory where the C files will be generated is automatically set to the ccg subdirec
tory under the project directory. Now we’ll use the Option wizard... to quickly create a
valid profile such as described below:

PragmaDev Studio V6.0 Page 55

Tutorial

Make sure the "Generate environment process" box is checked.

PragmaDev Studio V6.0 Page 56

Tutorial

PragmaDev Studio V6.0 Page 57

Tutorial

4.2.2 Graphical debugging

Once the SDL debug profile is properly defined select the SDL system in the Project

manager and click on the Execute quick button in the tool bar:
Since several execution profiles are defined, a window pops up asking for the profile
you want to use:

Select C code generation and click Ok. The code will be generated, compiled, and the
debugger will be started automatically:

The debugger interface looks pretty much like the simulator one:

PragmaDev Studio V6.0 Page 58

Tutorial

Click on the Start MSC trace quick button:

AnMSC Tracerwindow appears. Let’s start the system; click on ’run’ quick button:
The MSC Trace will look like the one below:

PragmaDev Studio V6.0 Page 59

Tutorial

Click on the Stop button to break execution:
The SDL debugger window shows the list of processes with their names, priority, pro
cess id, queue id, number of messages in their respective message queues, SDL internal
state as we defined in the diagrams, and the RTOS internal system state if available.

PragmaDev Studio V6.0 Page 60

Tutorial

As with the SDL Simulator, it is possible to set breakpoints, view the value of variables,
send messages... Would you like to know more about graphical debugging of C code,
we strongly suggest to go through the PragmaDev Developer tutorial as the debugging
features are the same.

PragmaDev Studio V6.0 Page 61

Tutorial

4.3 Validation

Since SDL is formal, executable and nonambiguous, it allows for powerful validation
techniques that can theoretically prove that the system never causes any problem and
even does what it’s supposed to do.
The most common verification technique is exhaustive exploration, which will execute
all possible paths in the system to look for errors, and can at the same time verify prop
erties to check the semantics of the running system. But the fact that SDL systems are
usually infinite loops accepting events from their environment often causes this kind of
validation to be impossible, since there is always one more event that can be sent to the
running system.
To solve this issue, PragmaDev Studio introduces a way to define limitations on the ex
ploration, allowing to consider only what’s relevant in the system and to avoid exploring
branches that are not interesting.
SDL validation uses an external tool developed by ENSTA Bretagne called Object Based
Porver, or OBP. OBP actually collaborates with PragmaDev Studio for the exploration
of models: it defines what transitions will execute in the SDL system, but the actual
transition execution is performed by Studio. This allows to have an execution semantics
that is exactly the one used in the tool. Each time a transition is executed, the whole
state of the system including all the running instances with their state and their variable
values are sent over to OBP, which keeps track of everything it has already explored.
What is sent to OBP from Studio is controlled via an exploration profile. A project
can contain several of these. They can be defined by selecting the "[OBP] Exploration
profiles..." in the "Validation menu" of the project manager:

This opens the following window, showing a default profile with all options to their
default value:

PragmaDev Studio V6.0 Page 62

Tutorial

The options in the profile are divided in 3 categories, with one tab in the dialog for each
one of them:

• "Options" are the exploration options. They allow to control howmessage queues
are handled and the priorities for special kind of transitions;

• "Messages" allow to define restrictions on messages coming from the environ
ment, in terms of number of messages and values for their parameters;

• "Variables" allow to define restrictions on the variables appearing in the pro
cesses, especially if they are relevant in the system state sent to OBP or not.

Let’s define an exploration profile for our system. First, we will limit the exploration
options to how the execution works in the SDL simulator:

The simulator uses a single system queue for all messages so that’s what we’ll be using
here. We also asked for the initial transitions for all processes to have priority over
all other ones, and to execute all internal transitions before considering any messsage
coming from the environment. These options shouldn’t have any significant impact on

PragmaDev Studio V6.0 Page 63

Tutorial

how the system is executed, and they will limit significantly the number of explored
states.
Second, let’s define some constraints on the incoming messages:

Here, we limit the number of "sCall" messages sent from the environment to the system
to 5. Considering that there are 5 instances of pLocal, this looks like a good value for
testing. Also, since all instances of pLocal play the same role in the system, testing all
possible values for the called number is not very interesting, so we’ll be using only the
value 2.
Note that limiting the number of sHangUpmessages is not needed: during exploration,
a message is sent from the environment to the system only if the instance that will re
ceive it is actually in a state where it will treat the message. Since this messsage is ig
nored by pLocal instances that are not connected to another instance, there’s no point
in limiting it.
Last, we’ll define which variables will appear in the system state sent to OBP:

PragmaDev Studio V6.0 Page 64

Tutorial

The builtin variables "offspring", "parent" and "sender" are either not used, or their
usage is limited to the current transition in both processes, so they donot need to appear
in the system state, as they have no impact on how transitions will be executed. In
pCentral, the variable "index" also has no impact on transition execution: it is only
used as a loop variable in the start transition, and locally in the Idle / sGetId transition:
once the transition is over, the value of "index" is not significant. So all these variables
are excluded from the system state.
Validate the exploration profile with "OK", then let’s select the system in the project
manager and run an exploration:

A first dialog appears, allowing to select the validation profile and the kind of explo
ration to run:

Let’s run a full exploration first. The OBP progress dialog appears and the exploration
starts:

PragmaDev Studio V6.0 Page 65

Tutorial

There can be several thousands of states to explore, so give it a little time. Once the
exploration is over, the progress dialog will show:

This means all reachable paths in the system with the exploration profile have been
explored. We can now ask if there are parts of our system that have never been executed

by asking for the code coverage via the button :

PragmaDev Studio V6.0 Page 66

Tutorial

The symbols that were never executed are shown in red with a minimum count of 0.
Here, we can see that the case where the phone number is incorrect in pCentral is never
executed, and looking at how the system is defined, it will indeed never be: the parame
ter to themessage "sGetId" is a PhoneNumberType, which is constrained to be between
1 and NUM_PHONE, so the decision will always select its "true" branch. So the "false"
branch is never selected, the message sError never sent, and therefore never received
in pLocal either.
Let’s close everything and run another kind of exploration with the same profile:

PragmaDev Studio V6.0 Page 67

Tutorial

In this mode, OBPwill try to find deadlocks in the system, i.e states where instances are
still alive, but nothing can happen because they’re all waiting for a message that cannot
be sent by any other instance. It will also detect errors in the system, for example, if
an invalid value is assigned to a variable considering the constraints on its type, or too
many instances of a process are dynamically created, and so on...
Once the dialog is validated, the progress dialog appears and the exploration starts:

At the end of the exploration, the dialog will show:

PragmaDev Studio V6.0 Page 68

Tutorial

The "VIOLATED" in the "Result" field means that some problem has been found. To

show the problem, the allows to extract a failing scenario, either as a MSC trace, or
as a scenario that can be executed back in the simulator. Let’s select the MSC trace:

The zone at the bottom of the trace says: "System is dead: instances are still running
but no pending messages", so this is a deadlock: the system is in a state where nothing
can happen any more, but instances are still alive and waiting for something. By going
up the trace, we can spot what has happened:

The very first call was actually from one pLocal to itself, which is a case that is not
handled correctly. So the pLocal instance is stuck in its "Connecting" state, waiting for

PragmaDev Studio V6.0 Page 69

Tutorial

either "sCnxConf" or "sBusy", which will never come. After that, all other instances of
pLocal have tried to contact it by sending a "sCnxReq" message, which will never be
handled. So all instances are now stuck.
So we can see that even on a very simple system like this, validation can actually spot
issues that weren’t obvious at first sight. It can actually do much more than that, es
pecially via properties that can be checked with the system. This is however out of the
scope of this tutorial; formore information, please refer to the example Studio/Validation
in the PragmaDev Studio distribution.

4.4 Conclusion

During this tutorial we have been through:
• Test of an SDL system,
• C code generation from an SDL system.
• Validation of the system using exhaustive simulation.

When it comes to design, the system will actually be implemented on a given target, so
additional requirements will have to be taken into account:

• Use of legacy code and/or external libraries, usually written in C with no way to
manipulate SDL’s highlevel abstract data types;

• Support for additional concepts, such as semaphores or pointers, unneeded in an
SDL description, but usually required in realtime systems.

This is the aim of the SDLRT language, which keeps the graphical description used in
SDL but introduces the missing concepts required for lowlevel design.
So let’s move on to the PragmaDev Developer tutorial!

PragmaDev Studio V6.0 Page 70

Tutorial

5 PragmaDev Developer Tutorial

5.1 Organization

Let’s get our hands on the tool! Start PragmaDev Developer (or PragmaDev Studio if
this will be the application you will be using).. The window that appears is called the
Project manager:

The Project manager window
The project manager gathers all the files needed in the project. First let’s create a new

project with the New project button:
A window will pop up to set the project file name. Use the ’Browse button’ to select the
project’s parent folder and file name:

PragmaDev Studio V6.0 Page 71

Tutorial

Let’s set it to "phone":

phone empty project

5.2 Requirements

Let us express the requirements of our system as MSC. To add an MSC, select the
project, and click on the right mouse button. A contextual menu will appear:

Add components to the project
Select Add child element and the following window will appear:

PragmaDev Studio V6.0 Page 72

Tutorial

The add component window
In the Requirements category, select MSC component and click on theNew button. Go
to the directory where your project is and type in "normal" with no extension. Click on
save and you will get the following window:

Completed Add component window
Click Ok and the "normal" MSC appears in the "phone" project:

PragmaDev Studio V6.0 Page 73

Tutorial

"normal" MSC in "phone" project
Double click on the MSC name or icon to open it. The MSC editor opens:

PragmaDev Studio V6.0 Page 74

Tutorial

The MSC editor
Draw the following to express the requirements of our phone system:

PragmaDev Studio V6.0 Page 75

Tutorial

The "normal" MSC
This MSC basically says the following:

• pCentral indicates the system has been initialized and is ready
• The initial global state is disconnected
• The user represented as the environment (RTDS_Env) makes a request on the first
phone pLocal to call the phone with the number 2

• The first pLocal asks the central the queue id of the phone with number 2
• The first pLocal uses the id to send a connect request (conReq) to the second

PragmaDev Studio V6.0 Page 76

Tutorial

pLocal
• The second pLocal being disconnected, it confirms the connection (conConf)
• The first pLocal tells the environment the call has succeeded
• The global system state is then considered connected
• The user hangs up
• The first pLocal sends a disconnection request (disReq) to the second pLocal
• The second pLocal confirms disconnection (disConf) back to the first pLocal
• The first pLocal tells the environment the disconnection is confirmed
• The overall final state is disconnected

You can write some other MSCs to get clearer ideas on what you want to do. Note the
instances represented on the MSC can be any type of agent or semaphore. Somehow
you are roughly defining the first architectural elements. You can copy from the phone
example "normal" and "busy" MSCs in the project to complete the description.

5.3 Design

Let us now specify and design the system. As for creating an MSC, select the project
and add a C header file component:

Project will be like:

PragmaDev Studio V6.0 Page 77

Tutorial

This header file will contain all type and macro definitions to use in the whole system.
What we need is the number of phones that will be created and a type for the phone
number. So open common.h and type its contents:

/* Number of phones to create */
#define NUM_PHONE 5

Now, let us actually design the system itself. Select the project and add a System com
ponent. Make sure to select SDLRT as the language for the system:

"phone" SDLRT system in the "phone" project
Double click on the system name or icon to open the system diagram in the SDLRT
editor:

PragmaDev Studio V6.0 Page 78

Tutorial

The SDLRT editor
The system being very simple it will not require any block decomposition. The central
will be a process as well as the phones. All the phones have the same behavior so they
will be several instance of the same process. The phone system is therefore made of
two processes. For better legibility their name will be prefixed by a ’p’ because they are
processes.
Note: to draw the cSelf channel keep the shift key down and click where the channel
should break.

PragmaDev Studio V6.0 Page 79

Tutorial

phone system view
Since pCentral is making the link between the pLocal processes and considering the
number of phones can be modified, pCentral will create all instances of pLocal. To
represent that, the name pLocal is followed by the initial number of instances and the
maximum number of instances. Since the maximum number of instances is defined in
common.h, we include it in a text box.
Messages to be exchanged between the processes are defined in the additional head
ing symbol and listed in the channels . To specify the incoming and outgoing
messages in the diagram, click on the "[]" and type in between the square brackets.
The channel going to the outer frame is implicitly connected to the environment. In
the above example the channel cEnvLocal connects pLocal to the environment and
defines call and hangUp as incoming messages and callConf, busy and hangUpConf
as outgoing messages. The channel cEnvCentral connects pCentral to the environ
ment and defines ready as an outgoing message. The cSelf channel has been created
to represent messages exchanged between the different instances of pLocal.
In themessage definitions, only themessages call, getId and idMsg have parameters.
In our example process ids will be stored, so in order to design an RTOS independent

PragmaDev Studio V6.0 Page 80

Tutorial

model the RTDS_PID type will be used. During code generation this type will bemapped
to the real RTOS data type.
Select pLocal and click on the right mouse button to open the process definition, or
simply click on the button that appears near the symbol when hovering the mouse
pointer over it:

Contextual menu
Since the process is not in the project it will ask if it should be added. Answer yes and
an Add child element dialog prefilled with the process name appears. Click OK and
you end up in a new windows showing the process definition.

PragmaDev Studio V6.0 Page 81

Tutorial

The process behavior description in SDLRT editor
The first thing to design is the start transition. It is what the process will do as soon as
it is created. In the case of pLocal process we do nothing:

That transition means that once the process is started it will go to state idle. Note you
can use automatic insertion in the editor: place a start symbol , keep it selected and
click on the state symbol in the tool bar . The state symbol is automatically inserted
and connected after the start symbol.
An internal data dictionary is updated on the fly to ease the writing of the process be

PragmaDev Studio V6.0 Page 82

Tutorial

havior. First create the idle state definition: click on the State icon and put it at the
top of your page:

The state name is in edit mode so you can directly type idle in it. Note that as soon as
you start typing, PragmaDev Developer will display a list of choices for the state name,
listing all those startingwith the text you have already typed. To select one of the names,
use the up and down arrow keys to browse the list, or click on it. Here, the list has only
one entry because the idle state is the only one that has been defined so far.
Once the state has been defined, click on the input symbol in the tool bar and the
input message symbol will be automatically inserted below the state symbol. As for the
state, the list of possible messages will appear as soon as you start typing. You can also
press the F8 key to display the list of all possible messages:

Select the call message and complete it with the parameter as described below. This
facility is context sensitive and works for messages, states, semaphores, and timers.
You can now finish the state description by yourself as explained below.
Considering the requirements described earlier the pLocal process can either be asked
to make a call by the operator or receive a call from another phone. The idle state can
therefore receive two types of messages described below:

PragmaDev Studio V6.0 Page 83

Tutorial

When receiving conReq message, it will reply conConf to the conReq sender. TO_ID
and SENDER are SDLRT keywords in the output symbol. The SENDER id is stored in
remoteId variable. The process then goes to connected state.
If asked to make a call, the phone number to call needs to be retrieved. To do so, a
variable of the correct type is given as parameter of the receiving message. It will be
assigned when this message is received. Since pLocal has no idea how to address a
phone number it asks the central process the receiver queue id with the getIdmessage.
The phoneNumber variable is reused as is and the TO_NAME SDLRT keyword is used to
specify the receiver. Note TO_ID PARENT could have been used since the central process
is the current process’s parent. The process then goes to gettingId state waiting for
the central to answer. Note also that the memory allocated for phoneNumber memory
will be freed by the receiver of the getIdmessage.
Once the queue id of the remote phone is received from central, it is first stored in a local
variable and the connection request message conReq is sent. The process then goes to
connecting state. If the pid of the receiver was not found, the errorMsg message is
received. The process tells the user (environment: TO_ENV) and goes back to idle state:

The remote process is either available and replies conConf, or not available and replies
busy:

PragmaDev Studio V6.0 Page 84

Tutorial

Depending on the answer the resulting state is different.
Now that you have understood the basics of the finite state machine you can complete
the process behavior:

As the description is done, the browsing window on the right side is updated allowing to
quickly jump to a transition: just click on the transition. This is especially useful when
the system gets big.

PragmaDev Studio V6.0 Page 85

Tutorial

It is now time to declare variables in our process. To do so the text symbol in the process
behavior diagram is used with standard C declarations in it:

Note the types of the variables used in the input and output symbols: short for call
and getId and RTDS_PID for idMsg. RTDS_PID is the type for a process identifier; It is
mapped to the corresponding RTOSdependent data type.
Let’s have a look at process pCentral now. It must do the following things:

• at startup, it creates all instances of pLocal and gives them a new phone number;
• when asked for a phone number, it sends back the queue id for the corresponding
process.

To avoid mixing the code managing the phone numbers with the code managing the
processes, let’s decide we’ll use a class associated to pCentral that will take care of the
phone numbers.
The first thing to do is to tell pCentral that it should use a class. So, let’s go back to

the project manager with the quick button and let’s create a class diagram named
telephoneLibrary in the project:

PragmaDev Studio V6.0 Page 86

Tutorial

Doubleclick on the class diagram’s name to open it and let’s define a class associated
to pCentral:

In a class diagram, the process pCentral is represented as an active class with a "graph
ical stereotype": the class symbol has bold borders and looks like a process symbol in a
block diagram. Note the symbol used is a process symbol, not a process class symbol.
That means the symbol is a direct reference to the process declared in the SDL system.
The class PhoneNumberFactory is the class we will use to manage the phone numbers.
Its interface is quite simple:

• Its constructor (named «create» in the symbol) will just initialize all internal
data, it takes the maximum number of phones to manage;

• The appendmethod will add a new phone to be managed.
• The getPidmethod will return the process id for a given phone number.

The class PhoneNumberFactory will also have 2 private attributes:
• numPhone is the next available phone number;
• phoneList is a pointer on a process id. The process ids will actually be stored in
an array.

Since there will only be one instance of PhoneNumberFactory used only in pCentral,
we can make the instance a part of the process via a composition with a cardinality
set to 1. The role name phoneId will identify the instance of PhoneNumberFactory in
pCentral. That means phoneId does not need to be declared in the SDL diagram; it is
implicitly declared.

PragmaDev Studio V6.0 Page 87

Tutorial

To fill in the attributes and operations, you can either type the text, or select the class,
click on the right mouse button and select Properties. The symbol properties will ap
pear in the zone at the right of the diagram editor. There, you can click the Structured
edit button, which will open a dialog allowing to add all the attributes and operations
in a graphical way:

Now we have our class to manage the phone numbers. Of course, it isn’t complete yet,
since we didn’t write any actual code for the methods. But its interface is fully defined,
so we can go back to our pCentral process.
Go to the systemdiagram phone, and double click on pCentral. Since the process is not
in the project it will ask if it should be added. Answer yes and a prefilled save window

PragmaDev Studio V6.0 Page 88

Tutorial

with the process name appears. Click OK and the process definition window appears.
First, its initial transition:

The first thing to do is to create the instance of PhoneNumberFactory we will use. This
is done via an object initialization symbol, where the instance phoneId (the name we
set in the role in the class diagram) is created as an instance of PhoneNumberFactory.
The class constructor takes the maximum number of phones to handle as a parameter.
Again, because of the association between PhoneNumberFactory and pCentral classes,
phoneId is implicitly declared in pCentral SDL behavior diagram.
Then, all instances of pLocal are created in a loop testing index < NUM_PHONE. Each
time the loop is executed the pLocal process is created and its process id (OFFSPRING
keyword for the parent process) is stored in phoneId object via the appendmethod.
After the pLocal processes creation, the ready message is sent to the environment to
indicate initialization is finished and the process goes to state idle.
Note we have intentionally introduced a C syntax error by forgetting ";" in the lowest
block of code to later show how to analyze the compiler errors.

PragmaDev Studio V6.0 Page 89

Tutorial

The only request that can be received by pCentral process is getId. The phone num
ber to reach is the GetId parameter (phoneNumber). The process id of the phone is
extracted with the getPidmethod. When received, the index corresponding to the re
ceived phone number is searched via the getPidmethod on the PhoneNumberFactory
instance. The answer is sent to SENDER (SDLRT keyword in output). If the phone num
ber is out of range, an error message is sent back to the sender.
Now, let’s go back to our class PhoneNumberFactory: we could write the .h and .cpp
files directly, but PragmaDev Studio can help. So go back to the project manager, select
the phone system, and select Generate classes code... in the Generation menu. A log
window will then list the operations made during the code generation, which should
run without errors.

Now let’s close the log window and go back to the project manager:

PragmaDev Studio V6.0 Page 90

Tutorial

RTDS class sources package has been automatically created and contains C++ code
generated from the classes defined in the project.
RTDS class sources should contain the .h and.cpp files for the class PhoneNumberFactory.
Open PhoneNumberFactory.h:

PragmaDev Studio V6.0 Page 91

Tutorial

Since the file common.h has been defined at the project level, it is supposed to be needed
everywhere in the project. So it has been automatically included in the generated header
file. RTDS_gen.h is a generated file containing declarations specific to the system. The
class definition then contains all attributes and operations we entered in the class dia
gram.
Please note this header file must not be modified manually: it will be regenerated each
time a code generation is made.
Now open PhoneNumberFactory.cpp:

PragmaDev Studio V6.0 Page 92

Tutorial

Skeletons for the constructor and the two methods defined for PhoneNumberFactory
have been generated, all containing a "#error" precompiler directive tomake sure they
won’t compile, since an implementation is now supposed to be written for them.
Note the C++ code browsing window on the right to quickly access operation defini
tions. The generated code also includes the attributes definitions as a comment.
Now you can enter the code for the methods:

PragmaDev Studio V6.0 Page 93

Tutorial

numPhone represents the next available phone number. The append method stores the
process id in the phoneList array with index numPhone.
Please note that once the .cpp file exists, it will not be overwritten by the next code
generation. So the code you’ve written will be kept as long as you don’t manually erase
the file.

PragmaDev Studio V6.0 Page 94

Tutorial

5.4 Running the system

In the current release, execution and debug of the system can be done using:
• Posix and gdb integration on Linux or Solaris, or
• Win32 or FreeRTOS and MinGW integration on Windows, or
• CMX RTX and Tasking Cross View Pro debugger on Windows, or
• OSE and gdb debugger on Windows, or
• Wind River Tornado environment on Windows or Solaris, or
• Nucleus and gdb debugger on Windows.

It is important to understand integration is done at two different levels:
• RTOS integration
The generated code is based on C macros that are defined in the ”Code template
directory” to call the corresponding RTOS system primitives. Currently there is a
directory for:
– FreeRTOS,
– Win32,
– Posix,
– CMX RTX,
– OSE Delta,
– OSE Epsilon
– ThreadX,
– uITRON 3,
– uITRON 4,
– VxWorks,
– Nucleus.

• Debugger integration
To be able to trace execution, set breakpoints and view variables, the SDLRT
debugger is interfaced with a C debugging environment. Depending on the C de
bugger functionalities there might be differences in the SDLRT debugger. The
available C debugger interfaces are:
– gdb (Gnu debugger)
– MinGW (Minimalist GNU for Windows)
– Tasking Cross View Pro

Tasking integration has one major restriction: it is not possible to send an
SDLRT message to the running system from the debugger.

– XRAY
As with Tasking integration: it is not possible to send an SDLRT message
to the running system from the debugger.

– Tornado

PragmaDev Studio V6.0 Page 95

Tutorial

– Multi 2000
As with Tasking and XRAY integrations, it is not possible to send an SDLRT
message to the running system from the debugger.

The rest of the tutorial will use your host environment as a target (windows or posix
integration) and gdb as a debugger. There is no need to install another tool as we will
use the ones provided in PragmaDev Studio distribution (gdb and MinGW).
Please note win32 and posix integrations use a socket to communicate with the host.
The default port set to 49250 but it can be modified in the Socket port num field of the
corresponding generation profile.

5.4.1 Generation profile

Now that the system is designed, let’s debug it with the SDLRT debugger. To do so
we will need to generate code from the SDLRT system. This requires to define a set of
generation options, which is done via the Generation / Options... menu:

Rename the default empty profile and use the Options wizard to quickly set up a work
ing profile:

PragmaDev Studio V6.0 Page 96

Tutorial

You’ll have to check that everything is setup properly:
• The destination directory should be set to ccg, in the project’s parent directory.
This should be the default. This directory will be created if it doesn’t exist yet, so
no need to create it explicitely.

• Since we’re using C++, we checked the "Use C++ compiler" in the wizard dialog.
Make sure the compiler is actually set to "mingw32-g++".

• Make sure the C++ include path option includes the upper directory because the
common.h file is in the project directory and the generated C files are in ccg. So
the compiler options must include "-I..".

Here is how the 3 tabs should look like in the final set of options:

PragmaDev Studio V6.0 Page 97

Tutorial

PragmaDev Studio V6.0 Page 98

Tutorial

Gnu example on Windows platform

5.4.2 Compilation errors

Once the SDLRTdebugprofile is properly defined select the phone system in theProject

manager and click on the Debug quick button in the tool bar:
If several execution profiles are defined, as in the examples, a window pops up asking
for the profile you want to use:

The first time, the tool will ask about the target directory:

PragmaDev Studio V6.0 Page 99

Tutorial

PragmaDev Studio will compare the dates of the generated C/C++ files with the dates
of the project, the diagram, the preferences. If the generated C file are not up to date
the following window will pop up to confirm the code should be generated again or not.

This is very useful with large projects to avoid long compilations.
The package RTDS generated code is automatically created in the Project manager
window that will contain all the generated C files.

The package RTDS RTOS adaptation is also automatically created in the Project man
ager window; it will contain all the C files needed to adapt to the selected RTOS. These

PragmaDev Studio V6.0 Page 100

Tutorial

files are actually in the code templates directory defined in the generation profile. These
files are normally not needed but since they are part of the build process they must be
visible.
The package RTDS class sources is also regenerated, but all the existing .cpp files
are left as is.
Syntaxic verification, semantic verification, code generation, and compilation starts:
Let’s consider an error occurred while designing pCentral process. The compiler will
complain in the Generation / compilation output window:

Double click on the desired warning or error to automatically open the SDLRT editor
on the error (please note this might not work when using another compiler than a gcc
based compiler):

PragmaDev Studio V6.0 Page 101

Tutorial

Once the error have been corrected theGeneration / compilation outputwindowshould
look like this:

PragmaDev Studio V6.0 Page 102

Tutorial

PragmaDev Studio V6.0 Page 103

Tutorial

5.4.3 The SDL-RT debugger

When launched, the SDLRT debugger will automatically start and initialize the under
lying gdb environment.The SDLRT debugger window is started automatically:

The SDLRT debugger window
The SDLRT debugger is basically a debugger with graphical integration. This window
provides snapshots of the overall system.
First we want an MSC trace to see what is happening in the system. Click on the Start

MSC trace quick button:
AnMSC Tracerwindow appears. Note it is not anMSC editor window; theMSC Tracer
has been optimized for performance and the displayed trace can not be edited.

Let’s start the system; click on ’run’ quick button:
Let the system run until all pLocal processes are created by pCentral and their start
transition executed:

PragmaDev Studio V6.0 Page 104

Tutorial

MSC trace
Note you can detach the execution button bar by dragging it away from the debugger

window by its header (the zone looking like this: if you don’t see it, go to the prefer
ences in the "Studio" menu of the project manager, and check the option "Detachable
toolbars" in the "General" tab).

The environment is represented by RTDS_Env process. It is automatically generated by
PragmaDev Studio when debugging to represent all external modules. When generat
ing target code it will of course disappear.
Process pCentral dynamically creates 5 instances of pLocal, sends readymessage to

PragmaDev Studio V6.0 Page 105

Tutorial

the environment and goes to idle state. Each pLocal instance then go to idle state.
On the left is the value of the system time.

Click on the Stop button to break execution:
The SDLRT debugger window shows the list of processes with their names, priority,
process id, queue id, number of messages in their respective message queues, SDL
RT internal state as we defined in the diagrams, and the RTOS internal system state if
available.

SDLRT debugger window
It can also display information regarding semaphores and timers, local variables and
watch variables. The SDLRTdebugger shell gives a textual trace of the events displayed
in the MSC.
We are now going to set a breakpoint, simulate a user using one phone to call another
one and step in process pCentral.
Let’s put a breakpoint in pCentral process. To do so:

• Open pCentral process from the Project manager. Doubleclicking on its name
in the running instances list in the debugger window works too.

• Go to transition getId in state idle using the transition browser window on the
right:

PragmaDev Studio V6.0 Page 106

Tutorial

or the view menu:

The transition browser of the View/Go tomenu will list all SDLRT states and all
transitions in each state to quickly navigate through the system. In our case there
is only one state and one transition.

• click on the symbol just after the decision:

PragmaDev Studio V6.0 Page 107

Tutorial

• click on or go toDebug / Set breakpointmenu in the SDLRT editor. A break
point symbol will be displayed on the side of the selected symbol:

We will now simulate an incoming message from a user. Please note this feature is
not available in the Tasking integration nor in the XRAY integration because these C
debuggers can neither execute function calls on target nor simulate interrupts.

• Go to the SDLRT debugger and click on "Send an SDL message to the running

system" quickbutton
• The Send an SDL message window shows up:

Send an SDL message window
On the left are listed all possible receiving processes, in the middle all possible mes
sages, i.e. all messages used in the SDLRT system, and on the right the value of the
parameters associated with the selected message.

• Prepare the message to be sent:

PragmaDev Studio V6.0 Page 108

Tutorial

The message to be sent is call, with the parameter value 2. We will choose the
first listed instance of pLocal as the receiver. You might want to write down it’s
PID, since we will send it another message later.
NB: it may happen that the first listed instance of pLocal has been assigned the
phone number 2, in which case the followingwill not work, as the phonewill try to
call itself. If this happens, just send again a new callmessage to another pLocal
instance.

• Click on Send & close button.
• Click on Run in the SDLRT debugger window,
• The following trace appears in the MSC:

• The SDLRT editor pops up where the breakpoint was set with the break line se
lected and an arrow in front of it:

The values of the process local variables are automatically displayed in the SDL
RT debugger. For example the phoneNumber variable value is 2:

PragmaDev Studio V6.0 Page 109

Tutorial

Local variables values

• Click on Auto step until next graphical symbol button:
That quick button will actually step in the C code until the line in the C file is
generated from a graphical symbol. In our case it will only step once.

• The SDLRT has moved to the next symbol:

• Click on Step over button:
This will step in the C code as any normal C debugger. The text editor opens
and displays the next line to execute in the generated C file. Have a look at the
generated code to see how legible it is.

PragmaDev Studio V6.0 Page 110

Tutorial

Note it is possible to switch from the SDL source to the generated C source back and
forthwith the Search /Go to generated source and Search /Generated code <> source
menus.

• Let the system finish its job: click on Run button.

• Stop the system once it has finished execution: . The process list is updated
with their new states:

Two instances of the pLocal process are connected.
• It is also possible to change the state of a process. To do so right click on the state
youwant to change and a drop downmenuwill list all possible states. Let’s change
the state of the last instance of pLocal to gettingId for example:

PragmaDev Studio V6.0 Page 111

Tutorial

The state is changed on the target and the process list will refresh:

It is recommended to be cautious when changing a task state that way...

• We will now disconnect the 2 instances of pLocal. Click on the Send button :

Select the hangUp message with the receiver set to the same pLocal instance as
you selected as the receiver of the callmessage earlier (check with its PID). Then
click on Send & close.

• We will now use the key SDLRT event stepping button:
This feature runs the system until the next SDLRT event such as sending or re
ceiving a message, changing SDLRT state, starting or cancelling a timer... Click
on the button and you will see the system executing until the next SDLRT event
and then stop. This is a very nice feature when debugging for the first time.

PragmaDev Studio V6.0 Page 112

Tutorial

5.4.4 Verifying the behavior

We will now check if the behavior is the one we expected in the first place. To do so we
will use the MSC diff feature.

• Once the execution is finished, close the MSC Tracer and save the trace.
• Go to the Project manager and open the trace.
• Go to the Diagram / Compare with other diagram... menu to get the MSC Diff
configuration window and set it up as described below:

The first MSC is the execution trace and the second MSC is the normal MSC we
have written in the first place. Since normal MSC was not supposed to be thor
oughly detailed we will only show and compare messages without considering
their parameters. Click Ok and you should get the following:

Here you can navigate through the differences, and by selecting All, then all of
them will be shown in the diagram:

PragmaDev Studio V6.0 Page 113

Tutorial

The differences between theMSCs are the dynamic task creation of the pLocal in
stances. After that the exchange of messages are the same between the dynamic
trace and the specification. The SDLRT system is therefore conform to the nor
mal MSC specification.

You are done with a very simple SDLRT debugging session. If you want more, do your
own system or run the examples delivered in the distribution to see how tomanipulate:

• timers,
• semaphores,
• external C header files,
• global variables.

PragmaDev Studio V6.0 Page 114

Tutorial

5.5 Prototyping GUI

PragmaDev Studio has a built in support to design simple prototyping interface to ease
testing. We will build a very simple one for our phone system to demonstrate its capa
bilities.

5.5.1 GUI editor

Add a Prototyping GUI node in the project and open it:

The left panel contains the incoming triggers for the GUI, the central panel the GUI
itself, and the right panel the outgoing message from the GUI:

PragmaDev Studio V6.0 Page 115

Tutorial

Let’s add 2 buttons and one LED:

PragmaDev Studio V6.0 Page 116

Tutorial

Change their display value in the central panel and their widget name in the right panel
in order to recognize them:

Let’s say that when the user clicks on the "Call John" button, the GUI sends a call
message with parameter set to "2". Select the CallJohn widget on the right panel and
right click:

PragmaDev Studio V6.0 Page 117

Tutorial

All the available messages in the system are then listed. Select call and expand the
created subtree. The parameters are listed with their corresponding type:

Let’s say the parameter value is ’2’ and let’s send hangUp without any parameter when
clicking on Hangup:

On the left panel now, we will add a new trigger. A trigger performs some action on
the widgets whenever a message is sent out of the system. Select the top of the tree and
right click to get a list of all the possible triggers:

Let’s add the callConf trigger. When a trigger is received by the GUI, a case with a set
of filters is verified. Let’s add a new case:

PragmaDev Studio V6.0 Page 118

Tutorial

In our case we won’t put any filter, we will just change the color of the LED:

The default action is DISPLAY; you’ll have to right click on it to change it to CHANGE_-
COLOR. The node in the tree under the action specifies the new color for the widget. It
is possible to directly name the basic colors, otherwise the RGB hexa code can be used
(e.g #FF8000 is this color). Let’s put the LED back to red when we receive a HangUp
confirmation and we’re done:

5.5.2 GUI simulation

Let’s start the Debugger again and click on the Start prototyping GUI quick button:
The GUI will start and connect automatically to the system:

PragmaDev Studio V6.0 Page 119

Tutorial

Start an MSC trace and run the system. Click on the "Call John" button, that should
send the callmessage with parameter value set to 2, the callConf should be received
by the GUI, and the LED should be set to green:

For a more advanced GUI, please have a look at the AccessControl system in the Devel
oper example directory.

5.6 Conclusion

During this tutorial we have been through the basics of the following:
• SDLRT;
• Project manager;
• SDLRT editor;
• MSC editor;
• Code generation;
• SDLRT debug including the three stepping modes:

– SDLRT key event,
– SDLRT graphical,

PragmaDev Studio V6.0 Page 120

Tutorial

– textual;
• Conformance checking;
• Prototyping GUI.

As a result you saw SDLRT has the preciseness of C language with the graphical ab
straction of SDL and UML perfectly suited to real time systems showing key concepts
such as tasks, semaphores, timers, messages in a single consistent development envi
ronment.
Now it is time for you to work on a real real time system!

PragmaDev Studio V6.0 Page 121

Tutorial

6 Automatic documentation
generation

Let’s now have a look at how to document our system. PragmaDev Studio has an au
tomatic documentation generator that generates OpenDocument (OpenOffice), RTF
(Microsoft Word), HTML, and SGML documents. In this tutorial we will generate an
OpenDocument as it is very similar to generating an RTF document.The basic idea is
to document while you are modeling your system in SDL, and when you are done just
generate the documentation for a word processor or a browser.

6.1 Publications

Let’s first definewhat is important to document in our systemandput it in a publication.
For example let’s consider the architecture of the system should be further documented:

PragmaDev Studio V6.0 Page 122

Tutorial

Get to the corresponding diagram and go to the Export menu. We want to export the
whole partition, so select Export/publish partition...

PragmaDev Studio V6.0 Page 123

Tutorial

The Export/publish window opens:

Let’s give our publication a name, theDoc type, and check the Save as publication box:

Select the Texts tab. The two editors here allow you to type the texts that will be gener
ated before and after the diagram when generating the documentation. Let’s type a few

PragmaDev Studio V6.0 Page 124

Tutorial

words to document the diagram with the predefined paragraph and character styles:

Wewant theNUM_PHONE identifier to appear as code, and also to be listed in the doc
ument index. To do so, select the text, and apply to it the code-index-entry character
style that is listed in the "ƒ:" selector above the text.
When done click OK.
Let’s now document a transition. Open the pLocal process and go to the connected
state:

PragmaDev Studio V6.0 Page 125

Tutorial

Go to the Export menu and select Export/publish selected state or transition...:

This will export the state with all the connected inputs as a publication. Let’s document
the state:

PragmaDev Studio V6.0 Page 126

Tutorial

Please note the publications are saved within the diagram so it is important to also save
the diagrams.

6.2 Documentation

Let’s now go back the Project manager and create a new item of type Document:

PragmaDev Studio V6.0 Page 127

Tutorial

Let’s open the Document Design:

PragmaDev Studio V6.0 Page 128

Tutorial

Select Design and rightclick to add a subsection, or click on the "+" button under the
section list on the left:

This subsectionwill actually be the first chapter of the generateddocumentation. Adding
other subsections at the samewill generate other chapters. Adding subsections to this
section will generate subchapters. Let’s type the section title and add some contents
to the section with the "+" button under the "Section header" zone on the right side:

In order to have theDiagram publication reference available, the diagrams containing
publications must be opened. So in our case the top level architecture diagram and the
pLocal process should be open in order to move on. After clicking the "+" button, the
following window will pop up:

PragmaDev Studio V6.0 Page 129

Tutorial

The Styled text allows to insert plain text in the documentation. To insert one of the
diagram publication, select Diagram publication reference. The window should then
look like this:

PragmaDev Studio V6.0 Page 130

Tutorial

Select the appropriate Publication diagram and Publication name to insert in the doc
ument. Then create another subsection in the document with the other publication:

PragmaDev Studio V6.0 Page 131

Tutorial

6.3 Automatic generation

Go to Document / Export as / Open Document Format:

An OpenDocument is actually a zip file that contains several files among which:
• one is the document itself as an XML file,
• one describes the styles used in the document also as an XML file.

In order to generate the full OpenDocument zip file, PragmaDev Studio requires a tem
plate file. There is a default one in the Studio distribution that will work fine, so you
don’t have to change it:

Now we will create an OpenDocument container for our generated document in which
we can set a title, introduce a table of contents, and an index. To do so, let’s start Libre
Office:

PragmaDev Studio V6.0 Page 132

Tutorial

Create a new Master document with File / New / Master document menu:

PragmaDev Studio V6.0 Page 133

Tutorial

Type the title, insert a page break, and insert a table of content with the Navigator
window:

In the same Navigator window, insert the OpenDocument we have just generated:

PragmaDev Studio V6.0 Page 134

Tutorial

And insert an index:

It is possible to drag and drop sections in the Navigator window to get the right order:

It is possible to add other sections or other external documents in themaster document.
When you further document your system, to update the generateddocumentation: open
your Pragmadev Studio document, export it as an OpenDocument, replacing the exist
ing one, and that’s it! The OpenOffice master document will be updated by itself as
well as its table of contents and index and ready to be printed. You can also set the

OpenDocument export as the default one and just press the button in the document
editor:

PragmaDev Studio V6.0 Page 135

Tutorial

Please note it is also possible to automatically generate all publications and a document
based on the project architecture. To do so, create a new document:

Open it and go to the "Document" / "Autogenerate from project..." menu:

Select the level for each publication:

PragmaDev Studio V6.0 Page 136

Tutorial

And a full document is generated:

If you already have existing publications at the proper level for the autogenerated doc
ument, they will be reused. If a publication is missing, it will be created. You can add
explanation texts to the publications after creating the document.

PragmaDev Studio V6.0 Page 137

	Introduction
	A simple system
	PragmaDev Specifier Tutorial
	Organization
	Requirements
	Design
	Simulating the system
	Simulation options
	Byte-code generation
	The SDL simulator
	Verifying the behavior

	Prototyping GUI
	GUI editor
	Simulation

	Conclusion

	PragmaDev Studio
	Testing
	Test case
	Declarations
	Ports
	Templates
	Core test case
	Control part

	Simulation against the SDL system

	Code generation
	Code generation options
	Graphical debugging

	Validation
	Conclusion

	PragmaDev Developer Tutorial
	Organization
	Requirements
	Design
	Running the system
	Generation profile
	Compilation errors
	The SDL-RT debugger
	Verifying the behavior

	Prototyping GUI
	GUI editor
	GUI simulation

	Conclusion

	Automatic documentation generation
	Publications
	Documentation
	Automatic generation

