
PR CESS

TUTORIAL

Tutorial

Contents

1 Introduction 3

2 The model 4
2.1 Organization . 4
2.2 Pools and lanes . 6
2.3 Processes . 11

3 Execution 20
3.1 Semantic check . 20
3.2 Interactive execution . 23
3.3 Automatic execution . 40

3.3.1 Single-trace execution . 40
3.3.2 Multi-trace execution . 51

4 Exploration 55
4.1 Complexity check . 55
4.2 Reachability . 57
4.3 Deadlock check . 60
4.4 Property verification . 61

5 Simulation 67
5.1 Resources . 67
5.2 Simulation parameters . 70

5.2.1 Bike delivery . 70
5.2.1.1 Scenario parameters . 70
5.2.1.2 Element parameters . 72

Time, cost, resources, and control parameters 72
Result requests . 78

5.2.2 Car delivery . 80
5.2.2.1 Scenario parameters . 80
5.2.2.2 Element parameters . 81

5.3 Running the simulation . 82
5.4 Simulation results . 85
5.5 Simulation log . 90
5.6 Critical path . 92

6 Conclusion 94

PragmaDev Process V3.1 Page 2

Tutorial

1 Introduction

Before starting this tutorial, it is important to understand the basic concepts used in
PragmaDevProcess. These concepts derive from the language supported byPragmaDev
Process, i.e., BPMN.

BPMN stands for Business Process Model and Notation. BPMN is a graphical
language defined by the Object Management Group (OMG). Its primary goal is to pro-
vide a notation that is understandable by all business users, from the business analysts
that create the initial drafts of the processes, to the technical developers responsible for
implementing the technology that will perform those processes, and finally, to the busi-
ness people whowillmanage andmonitor those processes. In doing so, BPMNprovides
a simple mean of communicating process information to other business users, process
implementers, customers, and suppliers.

The following are the most important elements of a BPMN diagram in PragmaDev Pro-
cess:

• A Collaboration is a collection of Participants shown as Pools, their interac-
tions shown byMessage Flows, and may include Processeswithin the Pools.

• A Lane is a sub-partition within a Pool that is used to organize and categorize
Activities of a Process within a Pool.

• A Process describes a sequence or flow of Activities in an organization with
the objective of carrying out work. In BPMN a Process is depicted as a graph of
flow elements, which are a set of Activities,Events,Gateways, andSequence
Flows.

PragmaDev Process V3.1 Page 3

Tutorial

2 The model

Themodel we have chosen is simple enough to be written from scratch but rich enough
to pinpoint the basics of BPMN. It is a pizza deliverymodel composed of a pizza Vendor
and aCustomer. Vendor’s activities are categorized in activities carried out by theClerk,
Chef, and Delivery Boy. Upon receiving an order from the Customer, the Clerk will
forward such order to the Chef. The Chef will then bake the pizza and hand it over to
the Delivery Boy. At last the pizza will be delivered to the Customer.

The BPMN model of the pizza delivery used in this tutorial is found in $PRAGMADEV_-
PROCESS_HOME/examples/Pizza.

2.1 Organization

Let’s get our hands on the tool! Start PragmaDev Process. The window that appears is
called the Project Manager:

Save the project via the button in the toolbar:

PragmaDev Process V3.1 Page 4

Tutorial

Name the project Pizza:

Create and add a new BPMN file to the project via the button in the toolbar:

Name it Pizza:

PragmaDev Process V3.1 Page 5

Tutorial

2.2 Pools and lanes

Double click Pizza.bpmn in the Project Manager to open it in the BPMN Editor:

To change the name of the current diagram use the button:

Name it main and hit "OK":

PragmaDev Process V3.1 Page 6

Tutorial

Notice the change in the diagram browser:

Create a horizontal pool via the tool button, or via the keyboard shortcut control+space,
then p:

and name it Customer:

You can leave the pool at its default size, as it will grow automatically when the process
for the customer is created in it. We’ll clean-up things later to make everything look

PragmaDev Process V3.1 Page 7

Tutorial

good.

Create another pool named Vendor:

Create a horizontal lane inside the Vendor using the tool button, or via the keyboard
shortcut control+space, then l:

PragmaDev Process V3.1 Page 8

Tutorial

Name it Clerk; it should automatically resize itself to the parent pool:

PragmaDev Process V3.1 Page 9

Tutorial

Now repeat the operation twice, taking care of dropping the new lane in the lower half
of the last one in the pool to add it at last position. Name the two new lanes Chef and
Delivery boy:

NB: to add lanes to a pool, you can also right-click on it to display its contextual menu
and select "Add lane at first position" or "Add lane at last position", or right-click on a
lane inside it and select "Add lane before" or "Add lane after" in its contextual menu.

PragmaDev Process V3.1 Page 10

Tutorial

2.3 Processes

Use the tool buttons to draw the Customer process as shown:

Symbols and links can either be created:

• with the tools in the toolbar;

• via keyboard shortcuts;

• by using the hover buttons appearing when the mouse pointer is over a symbol.

The very first symbol (here the start symbol named "Hungry") have to be created using
one of the first 2 methods. For the second method, the insertion keyboard shortcuts
are all introduced by "Control + Space" (or "Command + Control + Space" on macOS),
followed by a letter giving the type of symbol to create. For example, to create a start
event, press "Control + Space" followed by "s"; with "t", it creates a task, with "i" an
intermediate event, with "g" a gateway, and so on. To see the available letters, you can
press "Control + Space", then "?".

For all symbols other than the first, the most efficient method is to use the hover but-
tons. For example, once the start symbol has been created, putting the mouse pointer
over it will display 3 buttons beside it:

PragmaDev Process V3.1 Page 11

Tutorial

Adding a successor is done by pressing the mouse button inside the middle one, then
drag to where we want to put it:

When the button is released, a menu is displayed to select the actual type for the suc-
cessor:

Here, we want a task, so we click on the rightmost item, showing a task. A secondary
menu is displayed, allowing to choose the actual type for the task to create:

PragmaDev Process V3.1 Page 12

Tutorial

We want a plain task, so again, we click on the rightmost item, and the successor task
is created:

Notice that the parent pool has automatically adjusted its size to contain the new sym-
bol. This is because pools always contain whole processes, so since the new symbol is
a successor of the start, it is in the same process, so the parent pool must include both.
We can now set the actual name for the task:

And we’re done. We can now continue adding successors via the hover buttons until
the whole process is created:

PragmaDev Process V3.1 Page 13

Tutorial

Notice that we left out something in the process: the sequence flow going from the
"Pizza on its way" message catch event back to the event-based gateways is missing.
This is because it cannot be inserted the same way, since the successor already exists.
But there’s another hover button that we can use:

The hover button at the bottom allows to quickly draw a sequence flow from the symbol
to any other one. Clicking and dragging to the target symbol would create the flow with
the default path, but we don’t want that. So we’ll click on the hover button, release the
mouse button, then shift+click on every corner we want for our sequence flow:

Once the event-based gateway is clicked, the link is created just as we want it, and the
parent pool is automatically resized to include everything:

PragmaDev Process V3.1 Page 14

Tutorial

Note: when creating symbols via the keyboard shortcuts, the secondary circular menu
allowing to select the actual type for the symbol to insert will also be displayed.
Links can also be created via a "Control + Space" sequence: with "Shift + s", it creates
a sequence flow and with "Shift + m" a message flow. Sequence flows can also be cre-
ated automatically from the previously selected symbol to the newly inserted one if the
option "Automatically create sequence flows" is checked in the "Edit" menu.
Sequence (or message) flows are drawn as a sequence of horizontal and vertical seg-
ments by default. Should you need to change their path, you can either move the points
at the corners (called "waypoints") by selecting the link, then move the circular handle
that will appear at the corner:

or move any of its horizontal or vertical segments by using the diamond-shaped handle
in the middle of the segment:

Waypoints can also be added by right clicking a flow and select "Add waypoint" in the
contextual menu, then move the waypoint to the desired position:

Custom non-linear paths can be created also by holding "Shift" and clicking to place
waypoints while drawing the path from the source to the target symbol.
The Customer process says the following:

• The Customer is Hungry for pizza.

PragmaDev Process V3.1 Page 15

Tutorial

• He/She decides to Order a pizza.
• The Customer will wait until his/her pizza is delivered (Pizza received).
• If the pizza is not delivered within 30 minutes, the Customer will check what’s
going on with his/her pizza (Ask for pizza).

• Upon receiving the pizza, the Customer will Pay the pizza, Get receipt, and
finally Eat the pizza to be Satisfied.

Draw the Vendor process as shown:

The Vendor process says the following:
• Upon receiving an order from the Customer, the Clerk will enter a loop waiting
for complaints (Where is my pizza?), and in case of a complaint the Clerk will
try to Calm customer.

• The Clerk will also forward the received order to the Chef to Make the pizza.
• When ready, the Chef will hand over the pizza to the Delivery Boy to Deliver
the pizza.

Notes:

• Deliver the pizza is a process call activity.

• The process ends with an intermediate event. This error is intentional, and will
be corrected later in the tutorial.

PragmaDev Process V3.1 Page 16

Tutorial

To complete the Customer-Vendor collaboration draw the followingmessage flows, for
example using the ’message flow’ hover button (the first one) which is used the same
way as the ’sequence flow’ hover button:

Let’s define now the call-activity Deliver the pizza. Add a new diagram via the
button at the bottom of the diagram browser:

Name it delivery and hit "OK":

PragmaDev Process V3.1 Page 17

Tutorial

The new empty diagram will be selected. Draw the following:

When creating the message flows be sure to draw starting from / ending to either the
border or header of the pool Customer. Note that pools also have a hover button to
create message flows from them, so you can use that to create the one named money.
Save the changes and go to the maindiagram. Right click the call-activity and then "Link
to process...":

PragmaDev Process V3.1 Page 18

Tutorial

Select the single available option (except none) in the dialog and hit "OK":

Right click the call-activity and then "Open definition":

This should display the delivery diagram in the editor.

The model of the pizza delivery is now complete. Save everything before closing the
editor.

PragmaDev Process V3.1 Page 19

Tutorial

3 Execution

Now we will execute the model using PragmaDev Process BPMN Executor. There are
two kinds of execution:

• Interactive: allows the user to have full control over the execution. The user in-
teracts with the model at every step of its execution.

• Automatic: enables model execution without user input. The execution is guided
by MSC traces.

3.1 Semantic check

The model can be executed only if it conforms to BPMN 2.0 semantics. To make sure
this is true, select Pizza.bpmn in the project manager and click the "Check syntax &
semantics" button:

PragmaDev Process V3.1 Page 20

Tutorial

A window will pop-up showing the result of the semantic check on the model:

Double-clicking either of the listed errors will open the model in the editor and the
concerned element will be selected:

PragmaDev Process V3.1 Page 21

Tutorial

Replace the intermediate event with a terminate end event to correct the errors:

Re-running a semantic check on the model should not list any errors:

PragmaDev Process V3.1 Page 22

Tutorial

3.2 Interactive execution

With Pizza.bpmn opened in the editor (double-click on it in the project manager), click
the "Record" button:

This will allow us to record the execution in theMSC Tracer:

We can now start the execution via the "Start" button:

PragmaDev Process V3.1 Page 23

Tutorial

Start events and executable flows will be marked in blue:

PragmaDev Process V3.1 Page 24

Tutorial

Please note that generally speaking only sequence flows, some message flows, or call-
activities can be clicked. No other symbol can be clicked even though they appear in
blue. In our example there is a single sequence flow that can be executed. Clicking on
it will advance execution, i.e., make the Customer order a pizza:

The next (and only) step will be for the Customer to send the pizza order to the Clerk;
to continue click the sequence flow:

PragmaDev Process V3.1 Page 25

Tutorial

The pizza order will start the Vendor process. Clicking the sequence flow will result
in:

PragmaDev Process V3.1 Page 26

Tutorial

By entering the event gateway, the Customer will wait for its pizza to be delivered (i.e.,
the Pizza received event) and start a 30 minutes timer. If the timer fires before the
pizza is delivered, the Customerwill ask the Clerk for the pizza. On the other hand, the
parallel gateway in the Vendor process will allow the Clerk to listen to any Customer
queries, while the Chef starts baking the pizza.
While execution advances in the editor, all steps are also being recorded in the MSC
Tracer:

PragmaDev Process V3.1 Page 27

Tutorial

Let’s make the timer fire, the Clerk listen for Customer queries, and the Chef start
baking the pizza by clicking all three sequence flows:

PragmaDev Process V3.1 Page 28

Tutorial

Notice that the Pizza received event is no longer active because the 30 minutes event
was triggered. In this situation the Customer is asking the Clerk for the pizza, while
the pizza is being prepared by the Chef. If query for pizza is sent:

PragmaDev Process V3.1 Page 29

Tutorial

By clicking the sequence flow, the Clerk will Calm customer while the later will be
waiting for a feedback (i.e., the Pizza on its way event):

PragmaDev Process V3.1 Page 30

Tutorial

Make the Clerk respond to the Customer’s query by clicking the sequence flow which
will automatically send the patiencemessage:

PragmaDev Process V3.1 Page 31

Tutorial

Continue by clicking the looping sequence flow in the Customer process:

PragmaDev Process V3.1 Page 32

Tutorial

The Customer will get back to waiting for the pizza or for another 30 minutes to pass
before querying the Clerk again. We will not let the Customer wait any longer, so let’s
make sure the pizza is ready by clicking the sequence flow outgoing Make the pizza:

PragmaDev Process V3.1 Page 33

Tutorial

Now it’s time to Deliver the pizza. This is a BPMN call-activity which calls the pro-
cess defined in the delivery diagram. We can either step-over (right-click) or step-in
(left-click) the call-activity. Stepping over the call-activity will not execute the called
process, but will consider the activity as being a simple BPMN task. In this case the ex-
ecution will block because the activity will wait for the receiptmessage before sending
the pizzamessage. Stepping in the call-activity will show the delivery diagram in the
editor and start the called process:

PragmaDev Process V3.1 Page 34

Tutorial

We can Give the pizza to the Customer by clicking the sequence flow:

and then the following sequence flowwhich will automatically send the pizzamessage:

PragmaDev Process V3.1 Page 35

Tutorial

If we switch to the main diagram in the editor we can see that the Customer has indeed
received the pizza and can proceed with the payment:

PragmaDev Process V3.1 Page 36

Tutorial

Click the next two sequence flows to give the money to the Delivery Boy:

PragmaDev Process V3.1 Page 37

Tutorial

Continue by clicking all possible flows in both diagrams until there is nothing left to do,
i.e., execution is finished:

PragmaDev Process V3.1 Page 38

Tutorial

Note that in the MSC trace, activity starts and ends might be traced separately. This
happens for example if you click the incoming sequence flow for the activity "Eat the
pizza" for theCustomer, then click the outgoing sequence flow for the "Deliver the pizza"
call activity going to the terminate end event, and only after that click the ougoing se-
quence flow for "Eat the pizza". In this case, something is happening between the be-
gining and the end of "Eat the pizza", so they will be traced separately:

To generate model coverage click the "Generate coverage" button:

Coverage information will be shown as follows:

Coverage information helps to identify complementary scenarios in order to verify the
process. Please note several coverage information can be merged to make sure a set of

PragmaDev Process V3.1 Page 39

Tutorial

scenarios do actually cover all symbols.

Close the coverage window and stop the execution via the "Stop" button:

Save the recording via the "Save trace" button in theMSC Tracer:

Give it a name (e.g., pizza_ok), and it will be added automatically to the project:

3.3 Automatic execution

3.3.1 Single-trace execution

It is possible to replay a scenario. With Pizza.bpmn opened in the editor (double-click
on it in the project manager), click the "Replay" button:

PragmaDev Process V3.1 Page 40

Tutorial

All recordings (MSC traces) found in the project will be listed; select pizza_ok and click
the "OK" button:

PragmaDev Process V3.1 Page 41

Tutorial

The pizza_ok will be opened in the MSC editor:

PragmaDev Process V3.1 Page 42

Tutorial

while the execution will start automatically in the BPMN editor:

Click the "Step" button in the MSC editor:

PragmaDev Process V3.1 Page 43

Tutorial

The first sequence flow will be selected in the MSC editor:

PragmaDev Process V3.1 Page 44

Tutorial

and executed in the BPMN editor:

Try the "Step" button a couple of times and observe both (MSC trace and BPMNmodel)
as execution advances in steps. Now click the "Run" button:

PragmaDev Process V3.1 Page 45

Tutorial

Execution will continue until no more steps are left:

PragmaDev Process V3.1 Page 46

Tutorial

Check also the BPMN editor:

Use the "Stop" button to terminate execution.

PragmaDev Process V3.1 Page 47

Tutorial

With the pizza_ok opened in the editor, find the 30 minutes timer and change it to 10
minutes:

PragmaDev Process V3.1 Page 48

Tutorial

Save the modified MSC trace as pizza_ko via the menu "Diagram / Save as..."; it will
be added to the project:

With Pizza.bpmn still opened in the editor, click the "Replay" button, and select
pizza_ko for execution:

PragmaDev Process V3.1 Page 49

Tutorial

In the MSC editor click the "Run" button. Execution will stop at the timer symbol com-
plaining about text mismatch:

PragmaDev Process V3.1 Page 50

Tutorial

3.3.2 Multi-trace execution

The tool can replay automatically several scenarios in a row to make sure they are still
valid. Stop execution (if still running), and with Pizza.bpmn opened in the editor, click
the "Replay all" button:

Select pizza_ok and pizza_ko by clicking on them while holding "Ctrl". With both
traces selected click the "Resume" button:

PragmaDev Process V3.1 Page 51

Tutorial

The traces will be executed in the background, and the result of such execution will be
shown in the "Status" column:

Note thatmodel coverage canbe generated via the "Generate coverage formarked traces"
button.

PragmaDev Process V3.1 Page 52

Tutorial

Double-clicking a failed trace will:
• Open the trace in the MSC editor and select the concerned element:

PragmaDev Process V3.1 Page 53

Tutorial

• Select the corresponding element (if possible) in the BPMN editor:

PragmaDev Process V3.1 Page 54

Tutorial

4 Exploration

Exploration of BPMNmodels in PragmaDevProcess is done viaOBP (seeUserManual).
PragmaDev Process exploration feature can be used to check:

• Complexity: through full exploration of the model.

• Reachability: identification of unreachable paths.

• Deadlock: identification of blocking scenarios.

• Property: verification of a property expressed in either PSC (Property Sequence
Chart) or GPSL (Generic Property Specification Language).

4.1 Complexity check

The tool can automatically execute any possible combination of flows to evaluate the
complexity and the reachability of the model. With Pizza.bpmn opened in the editor
(double-click on it in the project manager), click the "Explore with OBP" button:

PragmaDev Process V3.1 Page 55

Tutorial

Select "Basic exploration", set "Call-activity definition" to "do not consider", and click
the "OK" button:

The "do not consider" option will step-over call-activities during exploration.

Observe the increasing number of fired transitions and of configurationsa while waiting
for the exploration to complete. The number of fired transitions shows the progress of
the exploration. The number of configurations is the number of different states of the
model as a whole figured out so far; it can be compared to the model complexity to find
out if that result is too high or normal (see User Manual).

aThe explorationmay be interrupted before completion when using the free version of PragmaDev Pro-
cess.

PragmaDev Process V3.1 Page 56

Tutorial

4.2 Reachability

A basic exploration will find all reachable paths in the process. If some symbols are
not reachable, there is probably a problem in the model. The coverage rate is displayed
in the exploration progress dialog; here, a coverage rate of 61% is displayed, so some
symbols were unreachable. To identify them, after the exploration is completed, click
the "Show uncovered elements" button:

Coverage information will be shown as follows:

PragmaDev Process V3.1 Page 57

Tutorial

The element tree can be expanded via the entries in the "Edit" menu to show which
symbols were uncovered:

PragmaDev Process V3.1 Page 58

Tutorial

All non covered elements during exploration will also be marked in red in the editor:

In our example, stepping over the Deliver the pizza call-activity resulted in being
stuck during exploration. This is because the behavior of a stepped over activity is to
wait for all incoming message flows before executing all outgoing message flows. Out-
going sequence flows can be executed only when all message flows have been treated.
The Deliver the pizza call-activity cannot send the pizzamessage before receiving
the moneymessage, which cannot happen.

PragmaDev Process V3.1 Page 59

Tutorial

Close the coverage information window, and "Quit" OBP.

4.3 Deadlock check

Now let’s check themodel for deadlocks. A deadlock is a statewhere there are no actions
to performbut the process is not finished (terminated). RunOBPagainwith "Deadlock"
selected:

PragmaDev Process V3.1 Page 60

Tutorial

Observe the result returned by OBP saying that the property was satisfied:

This means that there are no deadlocks in the model.

Note that the presence of non covered elements in the model does not mean that there
is also a deadlock. An infinite loop is a typical case where the process never terminates,
but there is always at least one action to perform. The following section will illustrate
this case using a property.

4.4 Property verification

We will first create a property and then verify it on the model. In the Project Manager
create and add a new PSC file to the project via the button in the toolbar, and name it
property_always_get_pizza:

PragmaDev Process V3.1 Page 61

Tutorial

Double click on it to open the MSC/PSC Editor, and draw the following property (more
information about the PSC can be found in the User manual):

The PSC property says the following:

• If the Customer has sent a pizza order to the Clerk, then
• the Delivery Boymust hand over the pizza to the Customer.

PragmaDev Process V3.1 Page 62

Tutorial

To verify this property, with the Pizza.bpmn opened in the editor, click the "Run OBP"
button. Select property_always_get_pizza and click "OK":

Observe the result returned by OBP saying that the property was violated.1 Property
violation will activate the "Display counter example" button, click it:

PragmaDev Process V3.1 Page 63

Tutorial

When asked to save the MSC, name it pizza_not_delivered and save it. The counter
example will be added to the project:

and displayed in the MSC Editor:

PragmaDev Process V3.1 Page 64

Tutorial

Quit OBP and hit the "Replay" button in the BPMN Editor:

Select pizza_not_delivered and hit "OK":

Hit the "Run" button in the MSC Editor:

PragmaDev Process V3.1 Page 65

Tutorial

Observe the counter example being replayed in the BPMN editor until the end:

The property was violated because there exists a case (as shown above) where the Cus-
tomer is stuck in an infinite loop always asking for his/her pizza, and thus never receiv-
ing it.

PragmaDev Process V3.1 Page 66

Tutorial

5 Simulation

The objective of a simulation is to evaluate the time needed to perform a given process,
as well as its cost. As an example, simulation can help in choosing the best method of
delivery for the pizza, e.g., bike vs car.

5.1 Resources

An activity might require a resource to be achieved. We will use our simple example to
demonstrate that with human resources. Add a new BPSim resource file (named Team)
to the project:

PragmaDev Process V3.1 Page 67

Tutorial

Double click Team.brsc in the Project Manager to open it in the editor, and create two
human resources: a Cook and another guy that has no particular qualification (named
Unqualified):

In the "Quantity" tab switch to editing mode via the "Edit" button:

The quantity of the resource can be edited by double-clicking the "Default" entry in the
table. To keep it simple, set the quantity to 1 for both resources while keeping all other
options unchanged:

PragmaDev Process V3.1 Page 68

Tutorial

In the "Roles" tab define three roles: Chef, Clerk, and Delivery:

Let’s go back to the "Resources" tab and click on the "Role" sub-tab. We will create a
situation where there are only two persons working in the pizza shop. The employee
with no particular qualification can answer the phone and deliver the pizza but he can
not cook. Add Clerk and Delivery to the roles of the resource Unqualified:

PragmaDev Process V3.1 Page 69

Tutorial

The Cook can cook the pizza and answer the phone but he can not deliver the pizza. Add
Chef and Clerk to the roles of the resource Cook:

We will use these resources later in the simulation parameters.

5.2 Simulation parameters

5.2.1 Bike delivery

5.2.1.1 Scenario parameters

With the Pizza.bpmn opened in the BPMN editor, select "Simulation scenarios..." in
the "Simulation" menu:

PragmaDev Process V3.1 Page 70

Tutorial

Add a new simulation scenario via the "New / copy scenario" button:

Name it bike_delivery and hit "Create":

Fill out the scenario attributes as follows and hit "OK":

PragmaDev Process V3.1 Page 71

Tutorial

The scenario is set to start in diagram main and to use the resources in Team; its number
of replications (i.e. runs) is set to 100, the time will be measured in minutes, and cost
will be measured in EUR.

5.2.1.2 Element parameters

Time, cost, resources, and control parameters
Simulation properties for every BPMN element in the model can be accessed via the
contextual menu by selecting "Simulation properties...":

PragmaDev Process V3.1 Page 72

Tutorial

Notice that the current scenario is the bike_deliverywe created earlier. Start by con-
figuring the parameters of the Hungry start event. Select "Control parameters: trigger"
and fill the parameters as follows:

PragmaDev Process V3.1 Page 73

Tutorial

The values mean that every simulation run (i.e. replication) will handle 10 pizza or-
ders with a delay of 10 minutes from one order to the other. Let’s continue with the
simulation parameters for the task Order a pizza:

PragmaDev Process V3.1 Page 74

Tutorial

This task is set to take from 1 to 5 minutes with a mean of 3 minutes (following a trian-
gular distribution). Next, set the timer to fire after 30 minutes:

PragmaDev Process V3.1 Page 75

Tutorial

For the vendor activities, in addition to the "Time parameters", the "Resource parame-
ters" have to be set too. To Make the pizza a resource with the role Chef is needed:

Set the parameters for all the tasks in the main diagramwith the following values (using
a triangular distribution for the time parameters):

Task
Time parameters Resource parameters
mode min max type quantity

Ask for pizza 3 2 5 None 0
Pay the pizza 1 1 2 None 0
Get receipt 1 1 2 None 0
Eat the pizza 20 15 30 None 0
Calm customer 2 1 5 Role Clerk 1
Make the pizza 10 8 15 Role Chef 1

NB: for activities "Pay the pizza" and "Get receipt", since they have the exact same pa-
rameters, you can select them both and enter the parameters for both at the same time.

PragmaDev Process V3.1 Page 76

Tutorial

Switch to the delivery diagram and set the values of the task Get to customer as
follows:

Note that for this task the "Unit cost" is set to 0.01 EUR/minute. This value represents
a rough estimation of the cost of using a bike for the delivery. Complete the remaining
tasks of the delivery diagram with the following values:

Task
Time parameters Resource parameters
mode min max type quantity

Get the money 1 1 2 Role Delivery 1
Give the receipt 1 1 2 Role Delivery 1

As above, the parameters for these two activities can be entered only once if you select
both activities.

PragmaDev Process V3.1 Page 77

Tutorial

Result requests
In the element parameters, in addition to simulation inputs (e.g., time, cost, control),
we can set also the desired outputs (or results) of the simulation. The outputs can be
requested on a single BPMN element and/or on a BPMN process. Let’s request some
results from the simulation. Return to the main diagram and go to the simulation prop-
erties of the task Calm customer. Select "count" for the "Results" as shown:

This will request the number of times the Clerk had to deal with complaints from
Clients. The value will give us an indicator for the service quality, i.e., less complaints
means less unsatisfied clients, which is better for the business.

PragmaDev Process V3.1 Page 78

Tutorial

Still with the properties of Calm customer shown, hit the "Parent process params"
button:

Select "min", "max", "mean" for both "Elapsed time" and "Unit cost", and hit "OK":

This will request from the possible simulation results the minimum, average, and max-
imum time and cost needed to perform the Vendor process.

PragmaDev Process V3.1 Page 79

Tutorial

5.2.2 Car delivery

5.2.2.1 Scenario parameters

With the Pizza.bpmn opened in the BPMN editor, select "Simulation scenarios..." in
the "Simulation" menu. Add a new simulation scenario, name it car_delivery, and
make sure its initial values are copied from the bike_delivery scenario:

Hit "Create" to add the new scenario, and then "OK" to apply the changes in the scenar-
ios:

Make sure the current simulation scenario is the new one. For this, in the "Simulation"
menu, select "Change current simulation scenario...":

PragmaDev Process V3.1 Page 80

Tutorial

Select car_delivery in the list of scenarios and hit "OK":

5.2.2.2 Element parameters

In the delivery diagram, change the simulation properties of the task Get to cus-
tomer as follows:

PragmaDev Process V3.1 Page 81

Tutorial

Note that the delivery by car takes less time but is more expensive compared to the
delivery by bike.

"Save model" to apply all changes.

5.3 Running the simulation

With the Pizza.bpmn opened in the BPMN editor, and the main diagram shown, hit the
"Simulate" button:

With both scenarios selected hit the "Run simulation with selected scenario(s)" button:

PragmaDev Process V3.1 Page 82

Tutorial

When done make sure the "Save results" is checked and hit the "Save results & close
dialog" button:

PragmaDev Process V3.1 Page 83

Tutorial

A new simulation results file (in BPSim format) will be added into the project under the
BPMN file:

Save the project.

Note that simulation results files are not editable. They are always associated to aBPMN
file in the project, and opening a results file will open the corresponding BPMN file in
the editor and load the results with it.

PragmaDev Process V3.1 Page 84

Tutorial

5.4 Simulation results

Double-click the simulation results file to load it in the BPMN editor. Right-click the
task Calm customer and select "Simulation results..." in the contextual menu. Make
sure "Show values" is checked to display the exact valuesa in the graph:

aNote that the exact values may differ from the figure.

The bar graph will show the number of times the task has been executed for each sce-
nario. Compared to the delivery by bike, the number of complaints is significantly lower
when a car is used.

PragmaDev Process V3.1 Page 85

Tutorial

Still with the results of the task Calm customer shown, hit the "Parent process results"
button:

PragmaDev Process V3.1 Page 86

Tutorial

Select "Cost: unit" in the "Parameter":

The graph will show the cost for both scenarios, i.e., bike and car delivery. Observe the
cost of bike delivery being significantly lower compared to the delivery by car.

PragmaDev Process V3.1 Page 87

Tutorial

Change the selection in the "Parameter" to "Time: elapsed":

The graph will show the times of delivery for both scenarios.

PragmaDev Process V3.1 Page 88

Tutorial

Select the "Resources" tab to see how occcupied were the resources during the simula-
tion.

One can see that at some point the Cook was unoccupied, because there were no more
pizzas to make.
A summary of simulation results can be exported in CSV format. For that, in the "Sim-
ulation" menu select "Export simulation results summary...":

PragmaDev Process V3.1 Page 89

Tutorial

The summary is presented as follows:

5.5 Simulation log

With the simulation results shown, go to the "Log" tab. Select one the entries and hit
the "Save as MSC..." button:

PragmaDev Process V3.1 Page 90

Tutorial

Name it log.rdd and save it. The trace will be added to the project:

PragmaDev Process V3.1 Page 91

Tutorial

and opened in the MSC editor:

5.6 Critical path

The critical path analysiswas checked in the simulation optionwindow. In order to view
graphically the critical path, select the Heatmaps tab in the right panel of the editor and
one of the scenario.

PragmaDev Process V3.1 Page 92

Tutorial

The one for the bike should look like this:

The waiting time for a resource looks like:

As a first quick analysis, it is missing one unqualified employee so that, one employee
stays in the shop to take the calls, while the other one is delivering the pizzas.

PragmaDev Process V3.1 Page 93

Tutorial

6 Conclusion

During this tutorial we have been through:

• BPMN,

• Project Manager,

• BPMN Editor,

• BPMN semantic check,

• BPMN Executor,

– Interactive,

– Automatic,

• BPMN Explorer,

– Complexity,

– Reachability,

– Deadlock,

– Property,

• BPMN Simulator,

– Resources

– Time & cost,

– Scenarios,

– Log,

– Optimization & trade-off,

– Critical path.

PragmaDev Process is a powerful tool that allows creating, editing, checking, executing,
exploring, simulating, and optimizing BMPN models.

PragmaDev Process V3.1 Page 94

	Introduction
	The model
	Organization
	Pools and lanes
	Processes

	Execution
	Semantic check
	Interactive execution
	Automatic execution
	Single-trace execution
	Multi-trace execution

	Exploration
	Complexity check
	Reachability
	Deadlock check
	Property verification

	Simulation
	Resources
	Simulation parameters
	Bike delivery
	Scenario parameters
	Element parameters
	Time, cost, resources, and control parameters
	Result requests

	Car delivery
	Scenario parameters
	Element parameters

	Running the simulation
	Simulation results
	Simulation log
	Critical path

	Conclusion

