
PR CESS

USER MANUAL

User manual

Contents

1 Introduction 6

2 Supported BPMN constructs 7

3 Project manager 9
3.1 Preferences . 9

3.1.1 General preferences . 10
3.1.2 Printing preferences . 12
3.1.3 Executor preferences . 13
3.1.4 Licensing preferences . 15

3.2 File manipulations . 15
3.3 Checking the models . 18

4 BPMN editor 20
4.1 Symbols . 20

4.1.1 Full BPMNmode . 21
4.1.2 Simplified BPMNmode . 23

4.2 Hierarchy . 23
4.3 Pools with sticky lanes . 24
4.4 Link with MEGA HOPEX . 27
4.5 Editor . 27

4.5.1 Diagrams . 27
4.5.2 Selection modes . 28

4.5.2.1 Select only . 28
4.5.2.2 Select or edit . 29

4.5.3 Flow and successor creation using symbol hover buttons 29
4.5.4 Symbol & link insertion keyboard shortcuts 31
4.5.5 Re-select last tool . 32
4.5.6 Automatic sequence flow creation 32
4.5.7 Handling broken segments . 33
4.5.8 Modifying symbol types . 36
4.5.9 Modifying link types . 38
4.5.10 Connecting Call activities . 39
4.5.11 Printing and exporting . 42

4.6 Heatmap . 42
4.6.1 File format . 42
4.6.2 Display . 43

PragmaDev Process V3.1 Page 2

User manual

5 Executor 45
5.1 Underlying principles . 45
5.2 Controlling the executor . 46

5.2.1 Via the graphical user interface . 46
5.2.2 Via the command line interface 47

5.3 Behavior . 50
5.3.1 Start . 50
5.3.2 Sequence flows . 50
5.3.3 Message flows . 51

5.3.3.1 Implicit resolution . 51
5.3.3.2 Explicit resolution . 54

5.3.4 Call activities . 59
5.3.5 Gateways . 59

5.3.5.1 Inclusive . 59
5.3.5.2 Exclusive . 61
5.3.5.3 Parallel . 63
5.3.5.4 Event . 65

5.4 Execution tree . 70
5.5 Coverage . 72

5.5.1 General information . 72
5.5.2 Highlight non-covered symbols 74

5.6 Execution traces . 75
5.6.1 Recording . 75
5.6.2 Replay . 75

5.6.2.1 Single-trace execution 77
5.6.2.2 Multi-trace execution . 78

6 MSC and PSC Editor 79
6.1 Overview . 79
6.2 MSC & PSC reference guide . 79

6.2.1 General diagram format . 79
6.2.2 Links . 80

6.2.2.1 Message links . 80
6.2.2.2 PSC-specific normal, required and failed message syntax 81
6.2.2.3 Sequence flow . 82

6.2.3 Main symbols . 82
6.2.3.1 Lifeline . 82
6.2.3.2 Lifeline components . 82
6.2.3.3 Collapsed lifelines . 87
6.2.3.4 Inline expressions . 88
6.2.3.5 Absolute times . 91
6.2.3.6 BPMN signals throws & catches (PragmaDev extension) 92
6.2.3.7 Enabled and disabled gates (PragmaDev extension) . . . 93
6.2.3.8 Comments . 94
6.2.3.9 Texts . 94

PragmaDev Process V3.1 Page 3

User manual

6.3 MSC editor . 95
6.3.1 Specific tools . 95
6.3.2 Symbol creation . 97
6.3.3 Manipulating components in lifelines 99
6.3.4 Big diagrams handling . 100
6.3.5 MSC symbol and link properties 101
6.3.6 Message parameters display . 101
6.3.7 Conformance checking: diagram diff & property match 102

6.3.7.1 Basic MSC diff: trace vs. trace, spec. vs. spec., … 103
6.3.7.2 Spec vs. trace comparison 106
6.3.7.3 Property match . 107

7 Explorer 110
7.1 Architecture . 110
7.2 Properties . 111
7.3 Launch an exploration . 111
7.4 Result analysis . 114

7.4.1 Full state space exploration . 114
7.4.2 Uncovered elements . 115
7.4.3 Property verification . 116

8 Simulator 119
8.1 Principles . 119
8.2 Simulation scenarios . 119
8.3 Simulation attributes . 121

8.3.1 Time parameters . 123
8.3.2 Cost parameters . 125
8.3.3 Control parameters . 126
8.3.4 Result requests . 129
8.3.5 Resource parameters . 130

8.3.5.1 Basic resource selection 130
8.3.5.2 Advanced resource selection (XPATH expression) 131

8.4 External BPSim data . 133
8.5 Running a simulation . 134

8.5.1 Via the graphical user interface . 134
8.5.2 Via the command line interface 137

8.6 Simulation results . 138
8.6.1 Summary . 140

8.6.1.1 Graphs . 140
8.6.1.2 Exporting . 142

8.6.2 Details . 143
8.6.3 Logs . 145

8.6.3.1 Global mode . 145
8.6.3.2 Selection mode . 147
8.6.3.3 Log files . 149

8.6.4 Resource logs . 151

PragmaDev Process V3.1 Page 4

User manual

8.6.5 Resource wait time heatmap . 153
8.7 Critical path . 155

8.7.1 Principles . 155
8.7.2 Configuration . 155
8.7.3 Heat map . 155

9 Resources Editor 157
9.1 Overview . 157
9.2 Resource definition files . 159
9.3 “Roles” tab . 160
9.4 “Resources” tab . 161

9.4.1 Resource attributes . 162
9.4.2 Resource quantities . 162
9.4.3 Resource roles . 175

10 Glossary 178

PragmaDev Process V3.1 Page 5

User manual

1 Introduction

Complex organizations or systemsoperations are based onprocesses described in graph-
ical models. Themost popular notation is BPMN. It describes what the different partic-
ipants in a process do and how they interact with each other. These processes must be
thoroughly discussed before they are applied in a real situation. Anymisunderstanding
of the process might lead to a catastrophic situation in operation.

PragmaDev Process is a set of tools:

• A project manager
The project manager will gather all the files of your project in one place for easy
access.

• BPMN Editor
The BPMN editor allows you to design your process graphically. It is also possi-
ble to import an existing diagram from another tool through the XML standard
BPMN.

• BPMN Executor
The BPMN executor animates your BPMN. The possible path of execution will be
graphically displayed.

• BPMN Tracer
When executing the model step by step it is possible to trace the different steps in
anMSC. One or several scenario can be replayed automatically against themodel.

• BPMN Explorer
The Explorer relies on a third party tool called OBP (Observer Based Prover) de-
veloped by ENSTABretagne. This tool will automatically try all possible scenarios
in the model. There are two possible outcomes of this exploration:

– Overall number of possible steps in the model.
If that number is too high compared to the size and complexity of the model,
it probably means the model is wrong.

– Verification of a property
Theproperty to be verified is expressedwith aPSC (Property SequenceChart)
that is a sort ofMSC. The Verifier will search if there is a scenario that verifies
the property.

PragmaDev Process V3.1 Page 6

User manual

2 Supported BPMN constructs

PragmaDev Process is a BPMN Viewer (VI), Editor (ED), and Executor (EX). There are
a few restrictions to these features as some BPMN constructs can be viewed but not
edited or executed. A summary of supported constructs is given in table 2.1.

PragmaDev Process V3.1 Page 7

User manual

Table 2.1: Supported BPMN constructs.

BPMN construct VI ED EX

Pool, Lane YES YES YES

Task YES YES YES

Sub-Process (Transaction, Ad-Hoc, and Event) YES NO NO

Call-Activity YES YES YES

Data (Object, Input, Output, and Store) YES NO NO

Start Event

None, Message, Timer, Signal YES YES YES

Conditional, Multiple, Parallel Multiple YES NO NO

End Event

None, Message, Signal, Terminate YES YES YES

Escalation, Error, Compensation, Multiple, Cancel YES NO NO

Intermediate Event (Throw)

None, Message, Signal YES YES YES

Escalation, Compensation, Link, Multiple YES NO NO

Intermediate Event (Catch)

None, Message, Timer, Signal YES YES YES

Link, Conditional, Multiple, Parallel Multiple YES NO NO

Boundary Event

None, Message, Timer, Signal YES YES YES

Conditional, Escalation, Error, Compensation, Multiple, Cancel YES NO NO

Gateway

Exclusive, Inclusive, Parallel, Event YES YES YES

Complex, Event Start, Parallel Event Start YES NO NO

Group YES NO -

Text Annotation YES YES -

Choreography, Conversation NO NO NO

Sequence Flow, Message Flow YES YES YES

Association YES NO NO

PragmaDev Process V3.1 Page 8

User manual

3 Project manager

When starting the tool, after setting the licensing mechanism described in the Installa-
tion manual, the Project manager pops up.

A project allows you to gather all the files related to the on going project: BPMN, traces,
and properties. By default an empty unnamed new project is created at startup.

3.1 Preferences

The first menu in the tool gives access to the preferences window:

PragmaDev Process V3.1 Page 9

User manual

3.1.1 General preferences

In the General tab, you can change the options for the application as a whole and for
the BPMNmodel editor:

PragmaDev Process V3.1 Page 10

User manual

• Language is the language used for all texts in the whole application.

• Theme is the theme used for the GUI; this is mostly useful for Linux users.

• Font DPI should be used only if there are issues with the text in the application,
e.g text that is way too small or too large. This usually means that the resolution
configured for fonts has been badly guessed by the GUI toolkit. If you have such
an issue, select Forced instead of Default in the menu and enter a resolution in
dots per inch in the field. The most common values for the resolution are 96 and
72; in some cases, values 92 or 80 can give good results too.

• Default selection tool formodels allows to select how the selection tool will behave
in the BPMNmodel editor. See "Selection modes" on page 28 for an explanation
of the available modes.

• Automatically create sequence flows allows to automatically set the same option
in all opened BPMN editors. This will automatically create a sequence flow from
the last inserted symbol to any new created one whenever possible. See "Auto-
matic sequence flow creation" on page 32.

• Line breaks handling in symbol texts controls how line feed characters are han-
dled for symbols that have their texts inside them (e.g, activities) and for symbols
that have their texts under them (e.g start, end & boundary events and gateways).
Two modes are available:

– InManualmode, all texts are wrapped to the appropriate width for the sym-
bol by actually inserting line feed characters. These characters are then kept
in the saved model, so if another line feed character is inserted by the user,
it is kept too. The width used for activities is the width of the symbol itself;
for events and gateways, the width used is 4 times the width of the symbol.

PragmaDev Process V3.1 Page 11

User manual

– In Don’t save mode, the wrapping is done the same way, but the line feed
characters are replaced by spaces each time the text ismodified. So thewrap-
ping is actually done each time the symbol is displayed or redisplayed. This
also means that any explicitely inserted line break will be lost when the text
is validated.

Note that this is done only for the symbols listed above: no wrapping happens for
any other symbol, including pools, lanes and also text annotations, where explicit
line breaks must usually be kept.

• Enable file locking controls whether a lock is set on the files opened from the
project manager. This is useful if the project is shared between several users and
editing the same models at the same time could lead to conflicts.

• Check for version update on startup controls whether a check is made when the
application starts to figure out if a new version is available. If there is one, a dialog
will appear offering to download it.

• Error reporting controls the level of information will be sent if an unexpected er-
ror ever happens in the application. The choices are "Operations only - nomodels"
to send a history of the operations performed during the session, but not any con-
tent of the edited models, and "Operations & full models" to send the contents of
the models as well.

3.1.2 Printing preferences

The Printing tab allows to define the default page setup that will be used when printing
BPMNmodels:

PragmaDev Process V3.1 Page 12

User manual

The Preset menu contains predefined standard page sizes. The horizontal and vertical
margins will be taken on both sides of the page: left & right, and top & bottom. If a
footer is added, it will take a little more space at the bottom of the page and will contain
the name of the diagram or model and the page number.

3.1.3 Executor preferences

The Executor tab contains some rules that can be enabled or disabled during BPMN
semantics check and execution, the default values used with OBP and options for sim-
ulation:

The following General options are available:

• Show warnings for unresolved message flows
When enabled, unresolved messages flows will generate warnings during a se-
mantics check (or execution). This option concerns message flows incoming or
outgoing an empty pool or lane (back-box). Message resolution is explained in
"Explicit resolution".

• Allow message flows in the same pool
The BPMN semantic does not allow message flows within the same pool. This
option allows to override this rule.

• Allow sequence flows between pools
The BPMN semantic does not allow sequence flows to cross pool boundaries, i.e.,
they are allowed only within the same pool. This option allows to override this
rule.

PragmaDev Process V3.1 Page 13

User manual

The OBP related values are explained in "Launch an exploration". They are:
• OBP heartbeat
Allows to change the default refresh value of the status information returned by
OBP during exploration.

• Max active states per element
Upper limit for the number of active states in a BPMN element (except message
flows).

• Call-activity definition
Exploration can be limited to certain scenarios by defining how a call-activity def-
inition is handled.

• Black-box pool definition
Exploration can be limited to certain scenarios by defining how a black-box pool
definition is handled.

The Simulation options are the following:
• Ignore parameters on call activities applies to call activities that have both de-
fined time and/or cost parameters and a called process. In this case, there are two
possibilities, and this option selects which one will be used:
– If the option is unchecked, the call activity is considered as an ordinary task
and its simulation parameters are taken into account. The linked process is
not executed.

– If the option is checked, the call activity’s simulation parameters are ignored
and the linked process is called. The times & costs for the call activity itself
are then computed from those of the tasks in the called process.

Note that this option gives the default value for all call activities. It is possible
to force the behavior on any call activity by using its load definition simulation
parameter, as described in "Control parameters" on page 126.

• Keep resources for activities controls the resource allocation for activities that
have to be suspended because the resources they use become unavailable. If the
option is checked, such an activitywill resume onlywhen the same set of resources
it started with becomes available again. If the option is not checked, the activity
can resume using any available set that matches its resource requirements, even
if it’s not the one it started with.

• Samples to check for non-zero inter-trigger-timer
When the scenario duration is set but trigger-count is not defined, the inter-trigger-
timer should not be zero. In this case, if inter-trigger-timer is defined as a distri-
bution, and all the samples taken from the distribution are zero, then an error is
raised during semantic check. This is done to prevent the creation of an infinite
number of triggers, which would block simulation.

• Number of CPU cores to use for parallel simulation
The execution workload of a simulation is distributed between the set number
of CPU cores. This enables running scenario replications in parallel to speedup
simulation. The value should be set according to the available CPU cores in the
machine. Note that setting the value higher that themaximumnumber of physical
CPU cores (not threads) may degrade performance.

PragmaDev Process V3.1 Page 14

User manual

3.1.4 Licensing preferences

You can also change the licensing mechanism as explained in the Installation Manual:

3.2 File manipulations

A file is added to the project with the ’Add file’ button:

A file browsing window will open, allowing to add files with the bpmn, rdd, bpsc, brsc
& gpsl extensions:

PragmaDev Process V3.1 Page 15

User manual

The file types are the following:

• Files with the bpmn extension are BPMN models. They are displayed and edited
in the BPMN editor described on page 20.

• Files with the rdd & bpsc extensions are MSC and PSC diagrams respectively.
They have different purposes, but very similar formats and are displayed and
edited in the same editor, described in "MSC and PSC Editor" on page 79.

• Files with the brsc extension are BPMN resource definitions. They are displayed
and edited in the Resources editor, as described on page 157.

• Files with the gpsl extension are textual property files. They are opened in the
default textual file editor defined via the operating system.

A new file is added to the project:

The button allows to add an existing file to the project. The available extensions
are the same, with the addition of bhmp, which are heatmaps that can displayed with a
BPMNmodel in the BPMN editor. The format for heatmaps and how they are displayed
with BPMNmodels are described in "Heatmap" page 42.

PragmaDev Process V3.1 Page 16

User manual

A project can also be directly opened:

The selected project will display its associated files:

Files can bemoved in the project by using themove handles that appear when hovering
over an element. Entries in the Edit menu allow to force an order for the items in the
project:

• If theKeep items grouped by type option is checked, project itemswill be grouped
by type: BPMN models first, then MSC traces and PSC diagrams, then textual
GPSL properties and finally code coverage results.

• If the Keep groups sorted by file option is also checked, items in each group will
be sorted by their file name. This will deactivate the arrow buttons since items
cannot be reordered in this mode.

Note that checking any of these optionswill actuallymodify the itemorder in the project,
so the project will need to be saved.

PragmaDev Process V3.1 Page 17

User manual

3.3 Checking the models

It is possible to check the syntax of a model from the Project manager. Select the dia-
gram and go to the Check menu:

In the case no errors are found:

In the case errors are found:

A double click on the error line will open the diagram and selected the symbol related
to the error:

PragmaDev Process V3.1 Page 18

User manual

PragmaDev Process V3.1 Page 19

User manual

4 BPMN editor

4.1 Symbols

Adouble click on anyBPMNdiagram in theProjectmanagerwill open theBPMNeditor:

The different symbols are organized in categories on the left side of the editor. The
available categories and the symbols they contain depend on the BPMN mode chosen
in the "Edit" menu:

PragmaDev Process V3.1 Page 20

User manual

In "Simplified BPMN"mode, only themost common symbol types are directly available
in the toolbar; in "Full BPMN"mode, all symbol types supported in PragmaDev Process
are shown.

Below is the list of categories and symbols available in each category and for eachmode.

4.1.1 Full BPMN mode

• Pools

– Horizontal pool

– Vertical pool

• Lane

– Horizontal lanes

– Vertical lanes

• Start events

– Plain start event

– Message catch start event

– Timer start event

– Signal catch start event

• Intermediate events

– Plain intermediate event

– Message throw intermediate event

PragmaDev Process V3.1 Page 21

User manual

– Message catch intermediate event

– Timer intermediate event

– Signal throw intermediate event

– Signal catch intermediate event

• Boundary events

– Message boundary event

– Timer boundary event

– Signal boundary event

• End events

– Plain end event

– Message throw end event

– Signal throw end event

– Terminate end event

• Tasks

– Plain task

– Message send task

– Message receive task

– Service task

– User task

– Manual task

– Script task

– Business

• Call activities

– Plain call activity

– User call activity

– Manual call activity

– Script call activity

– Business rule call activity

– Process call activity

• Gateways

– Exclusive gateway

– Parallel gateway

PragmaDev Process V3.1 Page 22

User manual

– Inclusive gateway

– Event gateway

• Text annotation

Note that these cannot be linked to other symbols yet.

• Sequence flow

• Message flow

4.1.2 Simplified BPMN mode

The available symbols are the same as for the Full BPMNmode, except in the following
categories:

• For start events, only the plain, message catch and timer ones are available.

• For intermediate events, only message catch, message throw and timer ones are
available.

• For boundary events, only message catch and timer ones are available.

• For end events, only plain and terminate ones are available.

• For taks, only plain ones are available.

• For call activities, only process ones are available.

Note that it is still possible to create any kind of symbol in Simplified BPMN mode by
creating a symbol, then changing its type via its "General properties": the "Shape kind"
selector will always contain all supported types, regardless of the current BPMNmode.

4.2 Hierarchy

BPMNhas container symbols that include other symbols. Typically Pools and Lanes are
containers for execution symbols. Drawing a symbol in a container symbol will auto-
matically associate the contained symbol with its container. Moving the container will
move all the contained symbols. Graphically dragging a symbol out of the container will
dissociate the symbols. In the example below, the start, the task and the end symbols
are contained in the OneLane lane. Moving the lane symbol will move all the contained
symbols.

PragmaDev Process V3.1 Page 23

User manual

4.3 Pools with sticky lanes

PragmaDev Process offers a way to makes lanes within a pool stick to their parent’s
sides. For participants created in PragmaDev Process, this option is automatically on.
For BPMN models created in other tools, it has to be turned on explicitely on the par-
ticipant:

Once it’s turned on, the lanes will expand to stick to the pool’s borders:

PragmaDev Process V3.1 Page 24

User manual

If a pool has sticky lanes, some operations will behave differently:

• If a lane symbol is dropped in the pool, it will insert itself in the lane set and expand
automatically to the pool’s borders;

• A lane can also be added at the first or last position in a pool via the pool’s con-
textual menu:

or after or before an existing lane in a pool via the lane’s contextual menu:

• Sticky lanes can only be deleted if they are empty. So to delete a lane, all the
symbols it contains have to be deleted first, ormoved to another lane. If the whole
contents of a lane has to be moved to another one, it is also possible to merge two
or more consecutive lanes into a single one:

PragmaDev Process V3.1 Page 25

User manual

Once the merge is done, all the symbols will end up in a single lane:

Note that the final lane will always have the name of the lane selected last before
merging them.

• To move all symbols in the lanes of a pool to the pool itself and discard the lanes,
it is also possible to delete the lane set of a pool:

A confirmation dialog will be displayed; if the lane set deletion is confirmed, all
symbols will be moved to the pool and all lanes will be removed:

PragmaDev Process V3.1 Page 26

User manual

4.4 Link with MEGA HOPEX

PragmaDev Process has a specific link with HOPEX tool as we are one of MEGA’s part-
ners. Users ofMEGAHOPEXcan launch thePragmaDevProcess executor fromHOPEX
on a set of selected diagrams. Diagrams are automatically exported in BPMN and can
be viewed in PragmaDev Process viewer. In that specific situation the models can not
be edited, they can only be viewed. If a modification should be made on the model it
should be on the source model in HOPEX. For that matter click on the "Go to source
model" button at the top of the editor:

Please note this feature only works with HOPEX web front end.

4.5 Editor

The BPMN editor is quite straight forward but there are a few particular features that
deserve to be explained.

4.5.1 Diagrams

A BPMN model may contain several diagrams. Diagrams can be added, removed, or
edited using the buttons in the right panel:

PragmaDev Process V3.1 Page 27

User manual

The panel can be shown or hidden with Toggle browser button .

4.5.2 Selection modes

The editor provides 2 modes for selecting and editing. It is possible to toggle from one
to the other with this button:

4.5.2.1 Select only

This is the defaultmode. Symbols have a graphical shape and some text inside. To
select the graphical shape of the symbol you can click anywhere in the symbol including
the text area:

To edit the text, double click on the text:

Thismode ismore efficient ifmost of thework is to graphically re-organize the diagram.

PragmaDev Process V3.1 Page 28

User manual

4.5.2.2 Select or edit

Symbols have a graphical shape and some text inside. To select the graphical
shape of the symbol you should click between the edge of the symbol and the text:

Clicking on the text will actually edit the text:

Thismode ismore efficient ifmost of thework is to edit the text contents of the symbols.

4.5.3 Flow and successor creation using symbol hover buttons

Once a symbol has been created in the model, it is possible to create its successors or
the message or sequence flows starting from it by using the buttons that appear when
the mouse pointer hovers over the symbol:

The top and bottom hover buttons will create respectively a message and a sequence
flow starting from the symbol. The mouse button has to be pressed when in the button,
then dragged to the target symbol:

PragmaDev Process V3.1 Page 29

User manual

After the mouse button is released, the link is created:

Creating a broken link can also be done by clicking on the hover button, then shift-
clicking on each of the waypoints for the link to create.

The other hover button which appears in the middle allows to directly create a succes-
sor for the symbol with the sequence flow connecting them. It is used just as the flow
creation buttons: the mouse button has to be pressed when in the button, then dragged
to the position where the successor must be created:

When the button is released, a circular menu will appear, allowing to choose the actual
type for the successor to create:

PragmaDev Process V3.1 Page 30

User manual

The red cross will cancel the successor creation. The other items will select the main
type for the successor to create. Depending on the current BPMNmode (see "Symbols"
on page 20) and the selected type, a second circularmenumay appear, allowing to select
the actual type for the successor. For example, in "Full BPMN" mode, if the main type
for tasks is chosen, the following secondary menu appears:

If for example a message receive task is chosen, the successor is created with this type,
along with the sequence flow connecting it:

4.5.4 Symbol & link insertion keyboard shortcuts

In addition to selecting them in the left-hand side button bar or creating them via the
hover buttons, symbols and links can also be created by using keyboard shortcuts. This
avoids having to get the mouse back to the button bar for every created symbol or link.
All these keyboard shortcuts are introduced by Control + Space (Command + Control +
Space on macOS), then a letter for each symbol type:

• Ctrl + Space, then p creates a pool;

• Ctrl + Space, then l creates a lane;

• Ctrl + Space, then s creates a start event;

• Ctrl + Space, then i creates a intermediate event;

• Ctrl + Space, then b creates a boundary event;

• Ctrl + Space, then e creates an end event;

• Ctrl + Space, then t creates a task;

• Ctrl + Space, then c creates a call activity;

• Ctrl + Space, then g creates a gateway;

• Ctrl + Space, then a creates a text annotation;

• Ctrl + Space, then S (i.e Shift + s) creates a sequence flow;

• Ctrl + Space, thenM (i.e Shift + m) creates a message flow.

The insertion then goes on just as if the corresponding tool had been selected in the
button bar: a symbol "ghost" appears and can be positionned at the location where
the symbol must be created. When the location is clicked, since only the main symbol

PragmaDev Process V3.1 Page 31

User manual

type has been specified via the keyboard shortcut, the creation actually behaves like
the creation of a successor via the hover buttons as described in "Flow and successor
creation using symbol hover buttons" on page 29: a circular menu appears and allows
to select the actual type for the symbol.

So for example, if a gateway is inserted via Ctrl+Space, then g, after clicking at the po-
sition where the gateway must be inserted, the following menu appears:

Selecting one kind of gateway from the menu will actually insert the gateway at the
clicked location.

4.5.5 Re-select last tool

When using the same tool again and again, it might be tedious to select it again and
again. For that situation pressing Ctrl + Shift + Space bar actually re-selects the last
used tool.

4.5.6 Automatic sequence flow creation

The option Automatically create sequence flows in the Edit menu allows to create se-
quence flows automatically between created symbols.

When this option is on and a symbol is created, once its text is validated, it will be
automatically selected. If a new symbol insertion is started, the "ghost" displayed to
mark the position for the symbol to create will also include a link from the selected
symbol:

Once the symbol is actually created, a sequence flow will be created between the previ-
ous symbol and the new one:

PragmaDev Process V3.1 Page 32

User manual

Note that the text for the automatically created sequence flow will always be empty.

This works too if the previous symbol’s text is opened for edition and a new symbol
creation is triggered via its keyboard shortcut. This allows to createmodels very quickly
and efficiently. An option is available in the application preferences’ General tab to
enable this feature by default in the editor (see "Preferences" on page 9).

4.5.7 Handling broken segments

When connecting two symbols with a sequence or a message flow, the created link will
be a succession of horizontal and vertical segments by default:

If you’d prefer a different path than the default one, but want to keep a succession of
horizontal and vertical segments, you can select the link and move the segments by
using the diamond-shaped handles:

The corner points - also called "waypoints in BPMN - can also bemoved via the circular
handles around them:

Note that the diamond-shaped handles do not appear on segments that are neither hor-
izontal, nor vertical.

It is also possible to add a waypoint via the contextual menu that appears when right-
clicking on the link:

PragmaDev Process V3.1 Page 33

User manual

You can just drag the newly created waypoint to where you want the segment to break:

To delete a waypoint, select the link, right click on the waypoint to get the contextual
menu and select "Delete waypoint":

PragmaDev Process V3.1 Page 34

User manual

It is also possible to ask the editor to remove all waypoints in the segment to get a default
straight link via the "Make link straight" entry in the contextual menu.

A link with a specific path can also be created from the start; to do so, hold the Shift key
down while creating the link and click where the waypoints should be:

PragmaDev Process V3.1 Page 35

User manual

Note that any horizontal or vertical segment will show a diamond-shaped symbol when
the link is selected:

4.5.8 Modifying symbol types

When selecting a symbol in the editor, some complementary information is displayed in
the right panel. If the panel is not displayed, it can be accessed directly by right-clicking
the symbol and then General properties...:

PragmaDev Process V3.1 Page 36

User manual

Click on the Shape kind to change the symbol type:

PragmaDev Process V3.1 Page 37

User manual

4.5.9 Modifying link types

Right-clicking on a sequence flowand thenGeneral properties... will display some com-
plementary information in the right panel. Click on the Edge kind to change the link
type:

PragmaDev Process V3.1 Page 38

User manual

4.5.10 Connecting Call activities

A Call activity references another process.

To link the Call activity to the other process description right click on the symbol:

PragmaDev Process V3.1 Page 39

User manual

This will open a selection window that will list the possible processes:

Now it is important to note the list of possible choices depend on the context of the
process as well as the context of the caller. The possible connection will list:

• processes that are in the same pool as the caller,

• processes that are in no pool (implicitly the pool of the caller).

To illustrate this let’s take the example of three processes described in MyFirstModel
diagram, one is defined outside of any pool, one is defined in john pool, and the last one
is defined in jim pool:

In another diagramwehave two call activities, one outside of any pool, and one in john’s
pool:

PragmaDev Process V3.1 Page 40

User manual

The possible links for external are:

The only possible choice is (main) of MyFirstModel meaning the process defined out of
the pools.

The possible links for internal are:

The two possible choices are:

• the process that has been defined outside of any pool,

• the process defined in john’s lane.

Once the link is done it will be used for navigation: double click will open the process
definition, and for execution: click on the call activity will execute the process.

PragmaDev Process V3.1 Page 41

User manual

4.5.11 Printing and exporting

Diagrams in a BPMNmodel can be exported as an image or printed in a paginated way.
Models can also be printed, which will print all of the diagrams in them in a single
document.

Exporting a diagram as an image is done via the entries in the Export diagram as sub-
menu in the Model menu. The available image formats are PNG, PDF, Encapsulated
PostScript, CGM v2 and CGM v3. It will ask for the name of the output file and export
the whole diagram as a single page in the specified file.

Printing a diagram is done via the entries in the Print current diagram sub-menu in
theModel menu. The diagram can be printed to the printer or as a PDF file. This will
take into account the page setup defined via the entryDiagrampage setup in theModel
menu and split the diagram in pages if needed.

The same feature is available for the model as a whole; the printed document will then
include all the diagrams in the model, split into pages.

Notes:

• Exporting a diagram to PDF and printing it as a PDF file will not produce the same
document. In the first case, thePDF filewill always have exactly one page, thatwill
have the size of the diagram itself, and no page borders or footers will ever appear.
In the second case, the page size will be the one defined in the diagrampage setup,
and the document can have several pages, each with borders and footers.

• The page setup is for the moment not remembered with the BPMN model. The
only way to remember a page setup is via the application preferences, but it will
be the same for all models.

4.6 Heatmap

4.6.1 File format

The file format for a heatmap is described in:

$PRAGMADEV_PROCESS_HOME/rtds_rel/share/bpmn/heatmap.dtd.

A simple example file is listed below that relates to the Pizza example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Heatmap SYSTEM "heatmap.dtd">
<Heatmap title="Example heatmap" min_value="0" max_value="30">
<Colors min_color="#00fbff" max_color="#FF0000" init_alpha="0.75" gradient_color_space="HSVl"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_10" value="0" label="Very low"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_18" value="5" label="Sequence flow"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_11" value="10" label="Average"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_19" value="15" label="Sequence flow"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_12" value="16" label="Event gateway"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_30" value="17" label="Sequence flow"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_24" value="20" label="Message catch"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_31" value="25" label="Sequence flow"/>
<Element model_file="Pizza.bpmn" id="SEM_SYMB_26" value="30" label="Plain task"/>
</Heatmap>

The tags and attributes are pretty much self explanatory:

PragmaDev Process V3.1 Page 42

User manual

• Heatmap has a title, a min_value and a max_value. If any of these values is not
specified, it is figured out from the values for the elements.

• Colors have a min_color and a max_color, which default to green & red. The
init_alpha is the value for the alpha channel for the color of the part of the "halo"
around the elements that is closest to the element itself. This is a number between
0 and 1, 0 meaning fully transparent and 1 fully opaque; the default value is 0.75.
The gradient_color_space is the color space to use to interpolate the colors for
the elements. The possible values are "RGB", and HSV in two variants: one for
the shortest path between the colors in the HSV colors space ("HSVs"), and the
other one for the longest path ("HSVl"). The default is "HSVs". Here is how the
gradient between the default colors green & red will look in the 3 possible color
spaces:

• Element has a model_file (a directory must be specified if the model is not in
the same directory as the heatmap; the directory can be relative), an id which is
the BPMN identifier of the element in the model, a heat value and a labelwhich
value will be displayed as a tool tip in the editor.

4.6.2 Display

The heat map above needs to be loaded in the project through the File / Add existing
files to project... so that the heat map appears in the project.

PragmaDev Process V3.1 Page 43

User manual

When opening the BPMN diagram the heat maps that are in the Project Manager will
be listed in the heat map tab in the right panel of the window. Click on one of the heat
maps to display it.

PragmaDev Process V3.1 Page 44

User manual

5 Executor

5.1 Underlying principles

Each BPMN element in the model has a state of execution:

• None
The element does not accept any action from the user, and it has never been en-
abled or disabled.

• Active
The element is waiting for either an enabling or disabling action from the user.

• Ready
An enabling action was issued on the element, but the element cannot be enabled
yet because it depends on the state of other elements.

• Enabled
An enabling action was previously issued on the element, and all enabling condi-
tions have been fulfilled (i.e., the other elements it depends on are in the required
state).

• Disabled
A disabling action was issued on the element.

There are two types of actions, that can be issued only on Active elements:

• Enabling: click on active element.

• Disabling: right-click on active element.

In general, these actions can be issued on sequence flows, message flows, and process
call-activities.

Since an element can be enabled or disabled several times (i.e., many flows of execution
can go through the same element), each element has actually a list of states of execution.
During execution the most recent state of the element is displayed in color as show in
the following table.

PragmaDev Process V3.1 Page 45

User manual

Table 5.1: Color representation of execution states.

State Color Example

None No color

Active Blue

Ready Orange

Enabled Green

Disabled No color

Having the most recent state shown, an implicit priority is created in displaying exe-
cution states, i.e., Active has the highest priority, then Ready, and last Enabled and
Disabled. For example, given an element that is Active in a flow and Ready in another
flow, its Active state will be shown in blue color.

5.2 Controlling the executor

5.2.1 Via the graphical user interface

The executor is controlled from the diagram editor with the following tools:

• It is started with the Start button .

• Once started, it can be stopped with the Stop button .

• Once started it can be reset with the Reset button .

• The execution scenario can be recorded with the Record button .

• A single execution scenario can be replayed with the Replay button .

• Several execution scenarios can be replayed with the Replay all button .

• Last execution step can be undone with the Undo button .

• Last undone execution action can be re-executed with the Redo button .

PragmaDev Process V3.1 Page 46

User manual

5.2.2 Via the command line interface

A BPMNmodel can also be executed via a command line. The command line interface
for PragmaDev Process uses a single command called pragmaprocesscommand, which
accepts a sub-command, then the options and arguments for this sub-command. The
sub-command for a simulation is execute, so simulating amodel via the command line
interface is done via:

pragmaprocesscommand execute \
[-m] \
[-s] \
[-v] \
[-d <diagram name or index>] \
[-p <port number>] \
<BPMN model file name>

The command arguments & options are the following:

• <BPMN model file name> is the name of themodel to execute. It must be present
in the command.

• If the -d option is present, it must be followed by either the index or the name
of the main diagram in the model, i.e the one on which the execution must be
started. If it is not specified, the executor is launched on the first diagram in the
model.

• If the -p option is present, it must be followed by a number between 1024 and
65535. This is the port where the executor will be listening for connection. If the
option is not specified, a random free port will be chosen.

• If the -m option is present, message flows will be allowed in the same pool (see
"Executor preferences"). If the option is not specified, message flows will not be
allowed in the same pool, which is the standard BPMN semantics.

• If the -s option is present, sequence flowsmay cross pool boundaries (see "Execu-
tor preferences"). If the option is not specified, sequence flows will not be allowed
between different pools, which is the standard BPMN semantics.

• If the -v option is present, additional information regarding execution will be dis-
played on STDOUT. If the option is not specified, no addition information will be
shown.

The executor will be started in server mode waiting for connection on the chosen port.
A single client can connect and control the executor using via a socket; multiple con-
nections are not supported. The client can send commands (with parameters) to the
executor. The executor will always reply with the result of the requested command.
Command requests and replies are serialized using JSON. The available command re-
quests and possible answers are listed in table 5.2, and the action representation in
table 5.3.

PragmaDev Process V3.1 Page 47

User manual

Table 5.2: PragmaDev Process Executor CLI commands.
Command Description

G
e
t
st
a
te

R

{
"cmd" : "get_state",
"args" : []

}

Request current execution state.

A

{
"status" : "ok",
"args" : [<number>]

}

Return the current execution state represented by a

number.

S
e
t
st
a
te

R

{
"cmd" : "set_state",
"args" : [<number>]

}

Set current execution state. The list of arguments

contains a single number representing the state.

A

{
"status" : "ok",
"args" : []

}

Acknowledgement.

G
e
t
a
ct
io
n
s R

{
"cmd" : "get_actions",
"args" : []

}

Request possible actions in the current execution

state.

A

{
"status" : "ok",
"args" : [<action>, ...]

}

Return the possible actions in the current execution

state. The list of arguments contains all actions.

E
x
e
cu
te
a
ct
io
n R

{
"cmd" : "execute_action",
"args" : [<action>]

}

Request execution of the given action in the current

execution state. The list of arguments contains the

action to execute.

A

{
"status" : "ok",
"args" : []

}

Acknowledgement.

R
e
se
t

R

{
"cmd" : "reset",
"args" : []

}

Reset executor.

A

{
"status" : "ok",
"args" : []

}

Acknowledgement.

R=Request, A=Answer

PragmaDev Process V3.1 Page 48

User manual

Table 5.3: Action representation.
{

"action_id" : <number>, Action identifier.

"element_id" : [<string>, ...], BPMN identifiers of elements the action
applies to. This is a list of sequence or
message flow identifiers.
This field takes a single value (not a list)
when action is passed to execute_action:
"element_id" : <string>

"instance_id" : <number>, Diagram instance identifier (during

execution).

"source_element_id" : <string>, BPMN identifier of the source element. This

is the source element of the sequence or

message flows.

"source_element_type" : <string>, Type of the source element.

"target_element_id" : [<string>, ...], List of BPMN identifiers of the target
elements. This is the list of identifiers of
every target element of the sequence or
message flows.
This field takes a single value (not a list)
when action is passed to execute_action:
"target_element_id" : <string>

"target_element_type" : [<string>, ...], List of target element types. There is one

target element type for each element target

id.

"action_type" : <string> Type of action; either "enable" or "disable".

}

All fields are present in actions returned by get_actions. However, when passing
an action to execute via the execute_action command, some fields may be omitted
(source_element_type and target_element_type can always be omitted). Also, the
fields element_id and target_element_id should be passed as a single value, not a
list. The actual action that will be executed is identified based on the fields present:

• If action_id is present, then only this field is used to identify the action. All other
fields can be omitted.

• If action_id is not present, but element_id is, then the later is used for identi-
fying the action. The remaining fields are optional.

• If neitheraction_idnorelement_id are present, then either source_element_-
id or target_element_id is used to identify the action. The remaining fields are
optional.

Note that the fields which are set should uniquely identify the action, i.e., if more than
one action is possible for execution at a given state, then the command will fail. When
any of the commands (requests) in table 5.2 fails, the answer will be:

PragmaDev Process V3.1 Page 49

User manual

{
"status" : "ko",
"args" : [<string>]

}
with the list of arguments containing a single value, i.e., the error message describing
the failure.

5.3 Behavior

5.3.1 Start

When starting, the executor will look for explicit and implicit starting points in the
model. An explicit starting point is a sequence flow following a Start symbol:

Any outgoing sequence flow froma taskwithout incoming flows can be an implicit start-
ing point. Here is an example:

5.3.2 Sequence flows

Sequence flows can be either enabled or disabled. However, even thoughmost sequence
flows can be enabled (if they are Active), disabling an Active sequence flow follows the
following rules:

• A normal (uncontrolled) sequence flow can be disabled only if it is an outgoing
flow of an inclusive gateway, and at least one other outgoing flow of the gateway
is still Active or has been enabled.

• In absence of normal (uncontrolled) flows, an outgoing conditional sequence flow
can be disabled only if at least one other outgoing conditional flow is still Active
or has been enabled.

• Default sequence flows can be always disabled if they are Active.

PragmaDev Process V3.1 Page 50

User manual

5.3.3 Message flows

Message flows may accept only enabling action, i.e., they cannot be disabled. The reso-
lution of amessage flow is the identification of both its endpoints (sender and receiver).
The Executor supports two kinds of message flow resolution:

• Implicit
Both sender and receiver are flow elements (e.g., task, event, etc.). The Executor
automatically identifies these flow elements as message flow endpoints. Message
flows DONOT accept any action from the user; they are enabled automatically by
the executor.

• Explicit
Either the sender or the receiver is a black-box participant (i.e., an empty pool
with no flow elements). The Executor expects user action for identifying the end-
points. Amessage flowMAY accept an enabling action only if its source is a black-
box (NOT a flow element).

5.3.3.1 Implicit resolution

The general message flow semantic is as follows:

• All incomingmessage flowsmust be present (Ready) before executing the receiver
of saidmessage flows, i.e., outgoing sequence flows become Activewhen enabling
actions have be issued on all incoming message flows.

• An automatic (implicit) enabling action is issued on all outgoing message flows
when an enabling (or disabling) action is issued on any Active outgoing sequence
flow. To ensure deterministic behavior, the order of enabling of themessage flows
is based on their BPMN ID (found in the Properties inspector in the right panel
of the editor):

To illustrate this let’s consider the following example:

PragmaDev Process V3.1 Page 51

User manual

When executing the first possible action is to go from the Start symbol to the Task:

Then the only possible action is the sequence flow outgoing the Task:

PragmaDev Process V3.1 Page 52

User manual

Enabling the sequence flow will automatically send the message, steve can proceed
now while tim is waiting for the second message:

Again, enabling the sequence flow will automatically send the message:

PragmaDev Process V3.1 Page 53

User manual

5.3.3.2 Explicit resolution

Large models are described in several diagrams written by different modelers. In these
situations the pools that are defined by the other modelers are represented by empty
pools. We call these empty pools black-boxes. During execution these black-boxes
might be defined or not, and even if they are defined one might not necessarily want
to execute them. The Executor provides a way to handle all these situations with the
concept of gates.1 A gate is a small rectangle on the border of the pool where the mes-
sage endpoint is found. The means that the message flow goes through the gate. At
startup, for each gate, the Executor will look for a process that handles the same mes-
sage flow from and to the same pools. If it finds such a definition, the gates can be
enabled or disabled by the user (hence explicit resolution). If enabled it will link both
processes, and if disabled it will act like the black-box is undefined. When the black box
is undefined, it is up to the user to send as many messages as wanted. An undefined
black-box will always receive all messages sent to it.

Note: the only situation where message flows are enabled (sent) explicitly by the user
is when they are outgoing an undefined black-box. In all other cases the message flows
are enabled automatically (impicitly) by the executor.

These concepts are illustrated by the following example with three diagrams. The first
diagram describes a process in pool Ywith messages exchanged with pool X and pool Z.

1The gate is not a BPMN symbol; it is a hidden symbol that may become visible only during execution
to support explicit message flow resolution.

PragmaDev Process V3.1 Page 54

User manual

The m1, m2, m4, and m5 interactions between X and Y, and X and Z are described in a
second diagram:

The m3 and m6 interactions are described in a third diagram:

PragmaDev Process V3.1 Page 55

User manual

When starting the Executor the links between the three diagrams are analyzed. The m1,
m2, m3, m4, m5, and m6 related gates are Active meaning a diagram definition has been
found for these message flows. It is possible to either enable or disable them.

If we enable the m1 related gate with a simple click on it:

PragmaDev Process V3.1 Page 56

User manual

It will automatically include the related diagram in the execution:

The first diagram will display the following:

PragmaDev Process V3.1 Page 57

User manual

If we disable the m3 related gate with a right click on it, the related diagram (the third
one) is then ignored and pool X is considered a black-box for m3. There is no diagram
that describes the m7 interaction, so for m7 pool X is also considered a black-box. In
practice that means the message flows can be always enabled in the Executor:

PragmaDev Process V3.1 Page 58

User manual

5.3.4 Call activities

Process call-activities accept enabling or disabling actions during execution. Enabling
a process call-activity means including the referenced process’ diagram (if it exists) in
the execution; this can be seen as a step-into the call-activity. Disabling a process call-
activitymeans ignoring the referenced process and treating the activity as a simple task;
this can be seen as a step-over the call-activity. So, when a process call-activity becomes
Active during execution, a left-click will step-into it, while a right-click will step-over it.

5.3.5 Gateways

The behavior of the gateways is conform to the standard. As a reminder some typical
cases are described in the following paragraphs.

5.3.5.1 Inclusive

Let’s consider a forking and a merging inclusive gateway:

The forking gateway allows to enable or disable condition 1 and condition 2. Not
both branches can be disabled because no further action could be done. To enable a
branch left click on it, to disable a branch right click on it. Let’s execute our example,
in the first step the start sequence flow can be enabled:

Then it is possible to enable any of the branches:

PragmaDev Process V3.1 Page 59

User manual

Let’s enable condition 1 branch:

and then the condition 2 branch:

Let’s continue with the sequence flow outgoing the do this task:

PragmaDev Process V3.1 Page 60

User manual

The merging inclusive gateway is waiting for the activation of the sequence flow outgo-
ing the do that task. Doing so will activate the outgoing sequence flow of the gateway:

It would have been possible to disable condition 2 with a right click. After that, en-
abling the outgoing flow of the do this task would have resulted in the activation of
the outgoing sequence flow of the gateway:

5.3.5.2 Exclusive

Let’s consider a forking and merging exclusive gateway:

Execution of this simple diagramwill first propose the sequence flow following the start
event:

PragmaDev Process V3.1 Page 61

User manual

Getting to the gateway will propose any of the outgoing branches:

When enabling one of the branches, the other ones get disabled:

Themerging gatewaydoes not expect any other active branches to let the flowgo through:

PragmaDev Process V3.1 Page 62

User manual

5.3.5.3 Parallel

Let’s take a simple parallel forking and merging gateway:

Let’s proceed until the forking gateway will activate both branches:

PragmaDev Process V3.1 Page 63

User manual

There is no way to disable a branch, both paths have to be enabled for the merging
gateway to allow further execution:

The merging gateway is waiting for both branches to allow further execution:

PragmaDev Process V3.1 Page 64

User manual

5.3.5.4 Event

Let’s take the following simple example:

The event gateway can be triggered by the m message coming from pool p1, or a time
out from the 5mn timer, or the s event that could be thrown by the process in pool p2.
Let’s start execution:

PragmaDev Process V3.1 Page 65

User manual

And enable the sequence flow after the start event:

PragmaDev Process V3.1 Page 66

User manual

A click on the sequence after the timer will activate the sequence after the exclusive
gateway. Note that all other branches are disabled:

PragmaDev Process V3.1 Page 67

User manual

A click on the m message flow will activate the upper sequence flow and disable the
others:

PragmaDev Process V3.1 Page 68

User manual

A click on the start sequence after the start event in pool p2 to throw the event that will
be caught by the lower branch of the gateway. Again the other brancheswill be disabled:

PragmaDev Process V3.1 Page 69

User manual

5.4 Execution tree

During execution, all processes can be followed via an execution tree displayed by click-

ing the icon at the top at the browser on the right side of the editor window. It will
show a tree like this one:

The top-level represents the main process in the model. Under it will appear all call-
activity symbols for currently running call-activities, with their only child representing
the process called by the call-activity. Here, the process "main" has called the process
"delivery" via the symbol "Deliver the pizza". The name appearing for the process is the
name of the diagram it appears in followed by the name of its parent model between
parentheses.

PragmaDev Process V3.1 Page 70

User manual

An instance number is added to each running process to take into account the case
where a process is running twice during an execution. This can happen for example in
a model like the following one:

In this process, the two symbols CA1 & CA2 actually call the same process, so there may
be two instances of the process running in parallel, of course in different states. The
execution tree will then appear like follows:

The process in the diagram "Called" appears twice with two different instance numbers:
the number 0 is the one called via the call-activity symbol "CA1", and the number 1 is
the one called via the call-activity symbol "CA2".

Once a call-activity has terminated its execution, its node in the execution tree will ap-
pear green:

The process in orange in the tree is the one currently shown in the editor window. Click-
ing on a process name will open the corresponding diagram and show the execution
status for the clicked instance number. Clicking on a symbol name will open its parent
diagram.

PragmaDev Process V3.1 Page 71

User manual

5.5 Coverage

5.5.1 General information

It is possible to generate coverage information at any moment during an interactive
execution in the BPMN editor. This can be done via the menu Execution / Generate

coverage... or the button . Coverage information will be shown in a window:

The coverage tree can be expanded via the menu Edit / Expand, and expansion can
be done at model, diagram, or element (all) level via the corresponding entry in the
expand sub-menu:

The tree can be collapsed and/or sorted also via the Edit menu.

When everything is expanded (i.e., all is selected in the expand sub-menu), the complete
list of elements will be shown:

PragmaDev Process V3.1 Page 72

User manual

Hits is the number of times a given BPMN element was executed. For parent nodes in
the coverage tree (e.g., model and diagram) there are two values forHits. These are the
minimum and maximum values of Hits of all BPMN elements present in the model or
diagram.
Double-clicking on a BPMN element will open its diagram in the editor and select the
element:

A coverage can be merged with others via the menu File / Merge... or the button :

PragmaDev Process V3.1 Page 73

User manual

5.5.2 Highlight non-covered symbols

It is possible to mark (in red) in the BPMN editor all non-covered symbols from the

coverage window via the toggle button :

PragmaDev Process V3.1 Page 74

User manual

5.6 Execution traces

5.6.1 Recording

An execution scenario can be recordedwith theRecord button . Clicking the button
will open theMSC Tracer and record the execution events, e.g.:

The description of the events that can be traced and the BPMN element (and execution
action) they represent is given in MSC & PSC reference guide.

5.6.2 Replay

A recorded execution trace can be saved for replay. Replay means executing a trace
against the model, while checking for differences between the two at every step. There
two checks done at every step:

• The referencedmodel IDof the current element in theMSC trace is checked against
the ID of the current element in the BPMNmodel.

PragmaDev Process V3.1 Page 75

User manual

• The text of both current elements (MSC and BPMN) are checked to see whether
they are the same.

The referenced model ID of an element in a trace can be accessed in the MSC editor by
right-clicking the element and Lifeline item properties or Link properties:

Note that the referenced ID is preceded by <name-of-bpmn-file>/.
In the BPMN editor the element ID can be accessed in a similar way:

PragmaDev Process V3.1 Page 76

User manual

5.6.2.1 Single-trace execution

The Replay button in the BPMN editor allows replaying of a single trace. After
choosing the trace to replay, the MSC editor will be opened in execution mode. The
execution is controlled from the MSC editor with the following tools:

• A trace can be executed till its end Run button .

• A single event of the trace can be executed with the Step button .

• When running, execution can be paused with the Pause button .

• Execution mode can be exited with the Stop button .

PragmaDev Process V3.1 Page 77

User manual

• Execution is reset with the Reset button .

When executing a trace either step-by-step or until the end, the state of execution will
be updated also in the BPMN editor. The current event in the trace will be checked and
compared against the BPMN model at every execution step. The execution will stop
either if a difference is found between the trace and the model or if the end of the trace
was reached.

5.6.2.2 Multi-trace execution

The Replay all button allows replaying multiple traces. Clicking the button will
show the following window:

To select several traces, hold down Ctrl or Shift and click on them.

The Status column contains the results of execution. Possible results are:

• = NONE (...), i.e., trace has not been executed yet.

• = PASS, i.e., no differences were found between the trace and the BMPNmodel.

• = FAIL, i.e., differences were found between the trace and the BMPN model.

• = ERROR, i.e., could not execute trace due to errors.

If the result of execution for a given trace is FAIL, then double-clicking the trace will
open it and the BPMNmodel in the editors, and select the symbols that caused the fail.

Coverage information from the repaly of multiple traces can be obtained via the Gen-

erate coverage for marked traces button . Coverage will be generated only for the
most recent executed traces, which are marked with .

PragmaDev Process V3.1 Page 78

User manual

6 MSC and PSC Editor

6.1 Overview

PragmaDevProcess allows to generate execution traceswhen executing theBPMNmodel.
The traces are based on a variant of the standard ITU-T MSC representation.

Online traces are created directly by the model being executed which sends trace infor-
mation.

Other features of PragmaDev Process may be used in conjunction with the tracer itself
to get a full-featured tracing utility with conformance checking against specification or
property verification:

• Trace diagrams can be directly created for documentation purposes;

• Trace diagrams can be compared in a visual way;

• Specification MSC diagrams can be created, then can be compared to execution
traces for conformance checking;

• Property diagrams can be created using the Property Sequence Chart (PSC) for-
mat, which can be:

– matched against execution traces;

– automatically verified with OBP explorer;

• All diagrams can be easily documented, for example by exporting them fully or
partially to common image formats, allowing to insert them in a document.

The general graphical form of the trace diagrams supported by PragmaDev Process is
described in section MSC & PSC reference guide below.

The tracing feature is described in the Executor chapter. The MSC and PSC editor is
described in MSC editor. The available checks that can be performed - trace against
trace, specification against trace or property matches - are described in Conformance
checking: diagram diff & property match.

6.2 MSC & PSC reference guide

6.2.1 General diagram format

A MSC or PSC diagram represents the interaction going on between entities called in-
stances over time. Instances will typically be a participant or a lane. Instances are
represented by symbols called lifelines, that look like follows:

PragmaDev Process V3.1 Page 79

User manual

<instance head>

Events
happening on

instance

The lifeline always starts with a head that specifies the instance name.
All events happening on the instance are then displayed on a vertical line under the
lifeline head. These events are described below in “Lifeline components” on page 358.
The lifeline terminates by a lifeline tail, that can take several forms depending on the
status of the instance at the end of the diagram.
Lifelines are distributed along the horizontal axis, and the vertical axis represents the
time, flowing from top to bottom. Events happening between lifelines are mostly rep-
resented by links, described in “Links” on page 355. Other symbols allow to further de-
scribe the diagram or add semantics to specification MSCs or PSCs; they are described
in “Main symbols” on page 366.

6.2.2 Links

6.2.2.1 Message links

An asynchronous message sent by an instance and received by another is represented
by a dashed line with an outlined arrow at its end:

sender receiver

message

Note that a message is a plain line in the genuine MSC format.
Amessage can also be received from an unknown source, or sent to an unknown target.
In this case, they are called a found message and a lost message respectively:

instance

found

lost

The syntax for the message link text is free.

PragmaDev Process V3.1 Page 80

User manual

6.2.2.2 PSC-specific normal, required and failed message syntax

In PSC diagrams, texts for message links are supposed to be prefixed with one of the
following:

• ‘e:’ indicates the message is a regular one. This means that the message is part of
the precondition for the property: all messages prefixed with ‘e:’ must appear to
trigger a property match. If any of these messages do not appear in the checked
diagram, the preconditions for the property are not satisfied, and no matching is
attempted. Regular messages should appear first in the PSC diagram.

• ‘r:’ indicates a required message. This means that if all the regular messages pre-
ceding this message are present in the checked diagram, this message must be
present for the property to match. If it does not, the property is violated.

• ‘f:’ indicates a fail message. This means that if all the regular messages preceding
this message are present in the checked diagram, this message must not appear
for the property to match. If it does appear, the property is violated.

Here is an example of a required message in a property:

client server

e:connect

r:answer

e:request

This means that if the client has sent a connect message to the server, then sends a
request message, the server must send back an answer message, or the property is vio-
lated.

Here is an example with a fail message:

client server

e:connect

e:request

f:not_connected

This means that if the client has sent a connect message to the server, then sends a re-
questmessage, the servermust not send back a not_connectedmessage, or the property
is violated.

Note that in PragmaDev Process, PSC wanted or unwanted constraints will also appear
in the message link text. For more details, see 6.2.3.2.

PragmaDev Process V3.1 Page 81

User manual

6.2.2.3 Sequence flow

A sequence uses a plain arrow that can go from one participant to another:

client waiter

skip cheese

Or that can stay on the participant:

participant

out of fuel

6.2.3 Main symbols

6.2.3.1 Lifeline

A lifeline represents an interacting entity in a MSC or PSC diagram. PragmaDev Tracer
allows the instance name appearing in the lifeline head to have the following format:

<instance name>[:<class name>][(<instance identifier>)]

Lifelines can appear in all kinds of diagrams: MSC trace or specification diagrams, as
well as PSC diagrams.

6.2.3.2 Lifeline components

Lifeline components are events impacting a single lifeline. They appear as symbols
attached to the lifeline.

Timer events An instance can start timers, that will time-out in a given amount of
time. A timer can also be canceled by the instance that created it. The symbols for
timers are the following ones:

participant

T(d)

T

T

PragmaDev Process V3.1 Page 82

User manual

The first symbolmeans the timer named T starts for a duration of d. The second symbol
represents a time out for the timer namedT. The last symbol represents the cancellation
of the timer named T.

Action symbol Action symbols describe actions performed by the lifeline. In the
current version of PragmaDev Process, they represent activities or tasks. For example:

instance

Compute checksum

The sequence of tasks or activities can also be tested in PSC diagrams by using the same
prefixes as for messages (cf. "PSC-specific normal, required and failedmessage syntax"
on page 81). See the example "ApproveReject" for an example of a PSC property testing
the sequence of tasks.

Relative time constraints A relative time constraint appearing in a specification
MSC diagram or a PSC diagram indicates that the sequence of events it encloses must
happen within a given time. For example:

client

<10mS

server

request

answer

This specifies there must be less than 10 ms between the time when Client sends the
request message and the time when it receives the answer message.

During conformance checking, relative time constraints are compared to absolute times
in the compared diagram (see 6.3.7 and 6.2.3.5). Please note that units are not yet
supported: relative time constraints can only contain a valid comparison operator (<,
>, <=, >=, …) followed by a real number.

Co-regions A co-region on a lifeline specifies that all events happening on this life-
line can happen in any order, and not only the order specified graphically. For example:

PragmaDev Process V3.1 Page 83

User manual

client server

T(10)

update

request

answer

The co-region, indicated by the dotted line on the server lifeline, indicates that the timer
and the outputs of messages update and answer can happen in any order.

Note that co-regions are not supported in the conformance checking feature of Prag-
maDev Process (6.3.7). The same semantics can usually be specified by using inline
expressions; see 6.2.3.4 for details.

PSC strict operator Events specified on lifeline in PSC diagrams are supposed to
be loosely ordered by default. This means that if anything happens between two of
these events, the property is matched anyway. It is however possible to specify a strict
ordering for a set of events,meaning that these eventsmust happen in this orderwithout
anything in between. This is done with the strict operator, that looks like follows:

A

e:request

r:answer

This means that a request message received by A must be immediately followed by the
output of an answer message, without anything in between (see 6.2.2.2 for the PSC-
specific link text syntax).

PSC constraints: wanted and unwanted messages & chains PSC diagrams
allow to specify on a message a set of messages that must or must not appear before
or after it for the property to match. Unlike other messages, the messages in these
constraint appear in what PSC calls the intra-message format, i.e as a text formatted
like: <sender instance name>.<message name>.<receiver instance name>.

In the PSC specification, the constraint itself is represented by a symbol appearing un-
der one end of the message link:

PragmaDev Process V3.1 Page 84

User manual

• If it appears under the link start (message output on sender), it is a past constraint,
meaning it must be satisfied before the message is sent for the property to match;

• If it appears under the link end (message input on receiver), it is a future con-
straint, meaning it must be satisfied after the message has been received for the
property to match.

In PragmaDev Process, the constraint is actually specified directly in the text of the link.
So a past constraint will appear in square brackets before the text for themessage itself:
[constraint] message_name(parameters…) and a future constraint will appear after the
text for the message: message_name(parameters…) [constraint]

Constraints can have several forms:

• An unwanted message constraint specifies a set of messages that should not ap-
pear. If any of the specified messages appear, the constraint is not satisfied and
the property does not match. In PragmaDev Process, this kind of constraint is
represented as follows:

Client Server

e:login

[=\=> Client.cancel_login.Server
| Client.logout.Server] r:login_ok

The brackets isolate the constraint from themessage itself, the “=\=>” is the stan-
dard prefix for an unwanted constraint in PragmaDev Process, and the messages
that should not appear before the login_okmessage are separated by a “|”, mean-
ing that if Client sends a login message to Server, Server must answer by sending
back a login_ok message, unless either the message cancel_login has been sent
from Client to Server before, or the message logout has been sent by Client to
Server before.
Note that is standard PSC, the representation would be something like:

• An unwanted chain constraint specifies a sequence of events that should not ap-
pear. If all messages in the constraint appear in the order specified in the con-
straint, then the property does not match. This kind of constraint is represented
in PragmaDev Process as follows:

PragmaDev Process V3.1 Page 85

User manual

Client Server

T(5)

e:login [=\=> Client.request.Server,
Server.answer.Client]

f:logout

Thebrackets andprefix are the sameas in the unwantedmessage constraint above,
but the separator between the messages in the constraint is now a “,”, denoting a
sequence. The constraint also appears after the message text, so this is a future
constraint. So this means that if Client sends a login message to Server, it is a
property failure if it sends a logout message after it, unless it has sent the request
message and Server has sent back the answer message in-between.
Note that in standard PSC, the representation would be something like:

• A wanted chain constraint specifies a sequence of events that must appear. If any
of themessages in the constraint does not appear, or themessages appear in a dif-
ferent order than the one specified in the constraint, then the property does not
match. This kind of constraint is represented in PragmaDev Process as follows:

Client Server

e:request

[==> Client.repeat.Server] r:answer

r:answer

The constraint appears before the message name, so it’s a past constraint. The
prefix “==>” is the standard one for all wanted constraints in PragmaDev Process.
So this specifies that if Client sends a requestmessage to Server, Servermust send
back an answer message, and then another one if Client sends the repeat message
after the first answer. Note that the standard PSC representation would be some-
thing like:

PragmaDev Process V3.1 Page 86

User manual

Note: PragmaDev Process actually supports more general types of constraints called
wanted and unwanted alternative chain constraint. Thesemerge themessage and chain
constraints described above. The general syntax for these constraints is:

[<constraint type prefix> I1.m1.J1,I2.m2.J2,… | In.mn.Jn,… | Im.mm.Jm,…]

where <constraint type prefix> can be either ==> for a wanted constraint, or =\=> for
an unwanted constraint.

• If the constraint is unwanted, this specifies that neither the sequence I1.m1.J1,
I2.m2.J2,…, nor the sequence In.mn.Jn,…, nor the sequence Im.mm.Jm,…should
appear for the property to match.

• If the constraint iswanted, this specifies that either the sequence I1.m1.J1, I2.m2.J2,
…, or the sequence In.mn.Jn, …, or the sequence Im.mm.Jm, … must appear for
the property to match.

This allows to represent all the PSC constraint kinds:

• Anunwantedmessage constraint {I1.m1.J1, I2.m2.J2}will be represented as: [=\=>
I1.m1.J1 | I2.m2.J2]

• An unwanted chain constraint (I1.m1.J1, I2.m2.J2) will be represented as: [=\=>
I1.m1.J1, I2.m2.J2]

• Awanted chain constraint (I1.m1.J1, I2.m2.J2)will be represented as: [==> I1.m1.J1,
I2.m2.J2]

6.2.3.3 Collapsed lifelines

Collapsed lifelines are a PragmaDev extension and result from a ‘collapse’ operation.
This allows to represent a set of lifelines as a single lifeline, events happening between
the lifelines in the set being hidden. For example, after collapsing the instance B and C
in the following diagram:

PragmaDev Process V3.1 Page 87

User manual

A B

T1

T1

T2

T2

C

subanswer1

request

subrequest2

subanswer2

answer

subrequest1

the diagram appears as follows:

A B+C

request

answer

6.2.3.4 Inline expressions

An inline expression in a specification or PSC diagram is a way to specify specific se-
mantics for a group of events. The semantics depend on the kind of inline expression:

• An ‘opt’ inline expression specifies an optional set of events. For example:

PragmaDev Process V3.1 Page 88

User manual

A B

opt

m1

m2

m3

m4

specifies that the message m1 is sent from A to B, then Bmay sendm2 to A, which
answers m3, then B sends m4 to A. So the sequences m1-m2-m3-m4, and m1-m4
are both valid.

• An ‘alt’ inline expression specifies a set of alternative behaviors. For example:

A B

alt

m1

m2

m3

specifies that when A sendsm1 to B, Bmay answer by sending backm2, orm3. So
the sequences m1-m2 and m1-m3 are both valid. An ‘alt’ inline expression must
have at least two compartments in it, and can have as many as needed.

• A ‘loop’ inline expression specifies a set of events that might be repeated several
times. For example:
specifies that after A has sent the message m1 to B, it may send any number of
messages m2, to which B will answer by the message m3, until A sends the mes-
sage m4 to B. So the sequences m1-m4, m1-m2-m3-m4, m1-m2-m3-m2-m3-m4,
and so on, are all valid.

PragmaDev Process V3.1 Page 89

User manual

A B

loop

m1

m4

m2

m3

Note that the MSC standard allows to indicate minimum and maximum number
of repeats in loop inline expressions. This feature is not yet available in Prag-
maDev Process.

• A ‘par’ inline expression specifies a set of event sequences that must all happen,
but in any order. For example:

A B

par

m1

m4

m3

m2

specifies that the two sequences A sending m1 to B and B answering m2, and A
sending m3 to B and B answering m4must both happen, but that the order is not
significant between the sequences. So the global sequences m1-m2-m3-m4 and
m3-m4-m1-m2 are both valid.
A ‘par’ inline expressionmust have at least 2 compartments, and can have asmany
as needed.

• An ‘exc’ inline expression represents an exception. This means the sequence of
events in the inline expression is an error case and terminates the scenario. For
example:

PragmaDev Process V3.1 Page 90

User manual

A B

exc

m1

m4

m3

m2

specifies that when A sends m1 to B and B answers m2, there is an error and the
scenario should stop. So the sequencem1-m2 is valid, but is an error case, and the
sequence m1-m3-m4 is valid and is a normal execution. Note that the MSC stan-
dard represents an ‘exc’ inline expression with a dotted bottom line. PragmaDev
Process uses a solid line in the current version.

• A ‘seq’ inline expression represents a weak sequence. Thismeans that within such
an inline expression, the events on a specific lifeline must happen in the given or-
der, but the general ordering can be anything. For example:

A

Ta

B

Tb1

Tb2

seq

m1

m2

This means that on lifeline B, the starting of Tb1 has to happen before the can-
celing of Tb2, but that the starting of Ta by A can happen at anytime: before the
starting of Tb1, after the canceling of Tb2 or between the two. Note that this kind
of inline expression is not supported in conformance checking (6.3.7).

6.2.3.5 Absolute times

In the MSC standard, absolute times can be associated to any event in the diagram by
using a symbol consisting only in a dashed underline under the text for the time. Prag-
maDev Process supports absolute times, but only associated to complete ‘event rows’:
the times are displayed in the left margin of the diagram and are associated to all events
with the same y coordinate, instead of any event. To keep the same representation as

PragmaDev Process V3.1 Page 91

User manual

in the MSC standard, each absolute time is displayed with a dashed underline:

These absolute times are the reference when verifying relative time constraints during
conformance checking (see 6.2.3.2 and 6.3.7). Please note that units are not yet sup-
ported: absolute time constraints must be written as a real number only.

6.2.3.6 BPMN signals throws & catches (PragmaDev extension)

PragmaDev Process allows to attach to a lifeline symbols that represent the beginning
of a BPMN signal throw, the end of a BPMN signal throw, and a signal catch. These
allow to trace signals from a BPMNmodel. These symbols look like follows:

PragmaDev Process V3.1 Page 92

User manual

This means that the lifeline B starts to throw a signal, that is caught by lifeline A before
the throw is ended by lifeline B.

6.2.3.7 Enabled and disabled gates (PragmaDev extension)

PragmaDev Process allows to attach to lifelines symbols representing gates for outgoing
or incoming messages on a lifeline, also indicating that the gate has been enabled or
disabled. This allows to trace the action performed during execution for the following
kind of BPMNmodel:

As explained in Explicit resolution on page 54, it is possible to either "open" the defi-
nition of the "Black box" partiticpant by enabling one of the gates for m1 or m2, or to
decide to ignore it and handle the sending & receiving of the messages "manually" by
disabling the gates.

The gates symbols on a lifeline allow to trace this action:

PragmaDev Process V3.1 Page 93

User manual

Here, the gate is enabled; the contents of "Black box" is loaded and the task "Send"
sending the message m1 is traced.

Here, the gate is disabled; the contents of "Black box" is not loaded and themessagem1
has been sent "manually".

6.2.3.8 Comments

A comment symbol just contains a documentation text for the item it is attached to.
Comment symbols are not yet supported in PragmaDev Process.

6.2.3.9 Texts

A text symbol contains informal text usually describing global items in the diagram.
Text symbols are not supported yet in PragmaDev Process.

PragmaDev Process V3.1 Page 94

User manual

6.3 MSC editor

This kind of editor is used for Message Sequence Charts. A MSC diagram describes a
sequence of events happening in a system, with a set of “lifelines” represented as vertical
lines, with symbols representing events attached to them.

There are 3 main kinds of MSC diagrams, which are all recognized by PragmaDev Pro-
cess:

• Basic MSCs represent a sequence of events that have actually happened during
a system execution. They will contain a lifeline for each participant or lane, and
events will be sequence flows, message exchanges, and timeouts. They are typi-
cally obtained by using the MSC tracing functionality in the executor.

• Specification MSCs will contain the same kind of events, but can group them
within other symbols with attached semantics. For example, a sequence of events
can be isolated in another MSC diagram that will be referenced via a “MSC refer-
ence” symbol. Or a sequence of events can be enclosed in an “inline expression”,
allowing to specify this sequence is optional, or can be repeated several times.

• Property Sequence Charts are another kind of specificationMSCs that are used to
describe “if/then” conditions: if a given sequence of events appear in a diagram,
then another sequence must appear behind it, or must not appear behind it.

The whole format for MSCs - basic & specification - and PSCs is described in 6.2. Note
that there is no specific editor for each kind of diagrams: all symbols are available in
the editor, and the kind of diagram is recognized automatically from what it contains.

The features of theMSC editor and their availability are described in the following para-
graphs.

6.3.1 Specific tools

The selection tool in MSC diagrams allows to select symbols and links, just as in other
editors. It also allows to select rectangular zones, that can be copied and pasted and
exported as image files:

Selected lifeline Selected message link Rectangular selection

Note that copying and pasting rectangular zones will work only for full “horizontal
slices” of the diagram: if a rectangular zone is selected, but does not span the full dia-
gram width, it will be automatically extended when copied or cut.

For example, if this zone is selected:

PragmaDev Process V3.1 Page 95

User manual

copying it will automatically extend the zone to the full width of the diagram and display
a warning:

When pasting a rectangular zone, a horizontal insertion line will be displayed:

Clicking in the diagram while the insertion line is displayed will paste the copied zone
at this position:

Note that the copy will fail if any object has an end within the slice but the other end
outside it, such as a lifeline starting before the slice and ending in it. The paste will fail
if one of the copied lifelines does not exist at the paste position.

PragmaDev Process V3.1 Page 96

User manual

6.3.2 Symbol creation

Creating symbols inMSCdiagrams is pretty straight forward. But someof the tools have
a special behavior, mostly because of the nature of the MSC diagrams, which describes
mostly a sequence of events, and not individual symbols:

• When creating lifelines, only the horizontal position will be considered: lifelines
are always created starting from the top of the diagram and going to the bottom.

• The creation of a lost (resp. found) message is done by selecting the message
creation tool and clicking on the right side (resp. left side) of the lifeline sending
it (resp. receiving it). For example:

Note that in legacy diagrams, lost and found messages have their own specific
symbol that must be created the usual way, and a message link has to be created
between the lost (resp. found) message symbol and its sender (resp. receiver)
lifeline.

• For conditions, MSC references and inline expressions, they must be created over
the lifelines they impact. This is done simply bymaking them span these lifelines,
and optionally all the events that must be included in them:

PragmaDev Process V3.1 Page 97

User manual

Once created, this symbols can be moved up or down by dragging them, and re-
sized horizontally via the handles appearing on their sides when they are selected,
which is the way to make them impact other lifelines than the ones setup at their
creation:

Excluding from the symbol a lifeline included in it can be done via the circular
handles appearing at the connection points between the symbols and the lifelines:

PragmaDev Process V3.1 Page 98

User manual

For inline expressions, their kind can then be changed by selecting it in the box
appearing when the mouse cursor is over its text:

6.3.3 Manipulating components in lifelines

To the difference of all other symbols, lifeline are composite symbols: they may include
several components like segments, timers or time constraints. Theymay also die before
the end of the diagram or survive it.

In normal diagrams these features are managed via the toolbar:

PragmaDev Process V3.1 Page 99

User manual

From top to bottom, the buttons add to a lifeline:

• a timer start;

• a timer time-out;

• a timer cancel;

• the start of a signal throw;

• the end of a signal throw;

• a signal catch;

• an enabled gate;

• a disabled gate;

• a time constraint;

• a PSC strict operator;

• an action symbol.

After selecting an item in the toolbar, press the mouse button at the desired position in
the lifeline, and drag to its end position (if applicable). To cancel the insertion, hit the
Esc key or select the selection tool.

6.3.4 Big diagrams handling

MSC diagrams can become quite big, especially if they are traces of models that can run
for a very long time. To avoid slow-downs during editing andmemory usage issues, the
MSC editor switches to a special mode when it detects the opened diagram is big. In
such a case, a message will be displayed under the diagram zone:

PragmaDev Process V3.1 Page 100

User manual

In this mode, most operations onMSC diagrams will remain available, but only a range
of events will be displayed in the window, and not the full diagram. This causes a few
limitations:

• The preview of the diagram while scrolling with the scroll-bar will be disabled.
The diagram will appear faded out while the scroll-bar is used, and the view will
update itself only when the scroll is over (mouse button released in the scroll-bar);

• Scrolling with the mouse wheel will occasionally trigger an update of the display,
when the displayed part of the diagram gets out of the actually displayed event
range;

• When selecting a rectangular region in the diagram, if the top or bottom border of
the region gets too close to the limits of the displayed event range, it will become
impossible to extend the region further;

• Events added or removed in the diagram will eventually trigger an update of the
displayed event range to prevent it from becoming too big or too small.

Other operations will behave as in the normal mode.

6.3.5 MSC symbol and link properties

Symbols and links in MSC diagrams display internal information on the right panel.
Please note some of the informationmay not be relevant to BPMN execution traces yet:

The informationmight be recorded automatically if theMSC diagram is a trace from an
execution. They can also be specified “manually” via the symbol or link properties.

PragmaDev Process will open itself the model elements that it has recorded in traces.

6.3.6 Message parameters display

Please note this feature is not used in the current version of PragmaDev Process.

A specific sub-menu in the “View” menu controls the message parameter visibility:

PragmaDev Process V3.1 Page 101

User manual

• A visibility set to “Full” displays the full text for the message parameters as it is
recorded in the diagram file. The parameters for structured messages are then
displayed in a flat textual format which can be quite difficult to read as this format
is quite complex;

• A visibility set to “Abbreviated” still displays completely parameters for non-structured
messages, but only displays the first level of parameter values in structured pa-
rameters. An example of this visibility can be seen below;

• A visibility set to “None” hides all message parameters.

This visibility setting is storedwith the diagram. Please note it is only possible tomodify
the text for the message parameters if the visibility is set to “Full”.

When the visibility is set to “None” or “Abbreviated”, structuredmessages are indicated
by a “»” before their name. Their parameters may be displayed by clicking on the mes-
sage link: a panel then appears in the right part of the editor window displaying the
parameters as a tree. For example, for a message with the full text:

mParams(|{param1|=42|,param2|=Hello|})

the display with parameter visibility set to “Abbreviated” and the link selected is:

Other information is also displayed in the panel:

• The sender and receiver process;

• The states of the sender and receiver processes before and after they sent or re-
ceived the message (not relevant with current version);

6.3.7 Conformance checking: diagram diff & property match

PragmaDev Studio offers 3 levels of conformance checking:

PragmaDev Process V3.1 Page 102

User manual

• AMSC trace can be compared to anotherMSC trace, used as a reference. This can
typically be used for regression testing, the reference trace giving the wanted be-
havior, and being compared to a newly obtained trace. In this kind of comparison,
all events in both diagrams are compared one by onewithout any interpretation of
any kind. This ismainly intended for trace comparisons, but it alsoworks on other
diagram kinds, as items normally only present in specification or PSC diagrams
are taken into account too, e.g inline expressions or relative time constraints.

• A MSC trace can be compared to a specification diagram. For this comparison,
the semantics in the specification is taken into account. For example, if there is
an ‘opt’ inline expression in the specification containing a sequence of message
exchanges, the comparison will interpret it, and consider that the diagrams are
matching if the sequence is there, or if it is not there at all. This allows to describe
expected scenarios in a powerful way via specification MSC diagrams and match
the execution traces against them later.

• Occurrences of a property described in aPSCdiagramcanbe found in aMSC trace.
In this case, the semantics are considered in the PSC diagram, as well as the PSC
specific elements. Note that this is different from a specification vs. trace com-
parison, as properties describe a small part of a scenario that can actually match
several times in a trace. MSC specification diagrams describe a whole scenario,
and will be matched entirely on the trace. Properties are a good and powerful way
to specify wanted and unwanted behavior in the designed system.

Important note: the current implementation of the algorithm used for specification vs.
trace comparisons andpropertymatches is limited in the number of events it can handle
after a matched one and before the next one. The current limitation is 200 events in
the trace, so if an event matches and the next event that should match is more than
200 events away from it, it won’t be found. This limitation will be removed in a future
version.

6.3.7.1 Basic MSC diff: trace vs. trace, spec. vs. spec., …

The basic MSC diff just compare two diagrams events by events and reports the found
differences. This kind of comparison is launched by selecting ‘Compare diagrams…’ in

the ‘Diagram’ menu, or by clicking the button in the toolbar. The following dialog
then appears:

PragmaDev Process V3.1 Page 103

User manual

Selecting the basic MSC diff is done by selecting the corresponding value in the ‘Diff
type’ field. The name for first MSC will be automatically set to the name of the cur-
rently displayed diagram. For the MSC to compare, it can be either selected in the list
attached to the ‘Second MSC’ field, or loaded from a file via its ‘Browse…’ button. Once
selected, the arrow in the right part of the dialog allows to exchange the twoMSCs if the
comparison must be done the opposite way.

PragmaDevStudio allows to exclude some elements from the comparison based on their
type. This is done by checking the ‘Filter activated’ option:

PragmaDev Process V3.1 Page 104

User manual

All the shown element types can be included or excluded from the comparison. The ‘All’
button will check all the boxes if any of them is unchecked, and uncheck them if all are
checked.

The option ‘Display full results’ at the bottom of the dialog allows to display only a sum-
mary of the comparison results instead of the full set of differences. To display the
summary, just uncheck the box.

If this option is checked and after validating the dialog, PragmaDev Studio puts each
diagram in its own window and displays them side by side. A dialog also appears at the
bottom of the screen, allowing to browse through the found differences:

PragmaDev Process V3.1 Page 105

User manual

A summary of the differences is displayed at the top. Each difference will be highlighted
in red in the diagram displayed on the left, and in blue in the diagram displayed on
the right. The text in the dialog gives a short description of the identified difference.
The arrows allow to browse through the differences. The option ‘Highlight’ allows to
highlight all differences in both diagrams to get a quick view of what differs without
having to browse through all the differences.

6.3.7.2 Spec vs. trace comparison

Comparing a specification diagram to an actual trace is done the sameway as for a basic
MSC diff, except the diff type has to be set to ‘Spec. vs. trace’ in the dialog:

Note also that the specification diagrammust be the one specified in the field ‘SpecMSC’
in the dialog, which is always the first one. If needed, the diagrams can be swapped by
using the arrow button on the dialog’s right side. The same filters are provided as for a
basic MSC diff.

Once validated, the found differences are displayed in the same way as for a basic MSC
diff; only the way to perform the comparison changes, as semantics in the specification
is taken into account where it would not be in a basic MSC diff:

PragmaDev Process V3.1 Page 106

User manual

6.3.7.3 Property match

Matching a PSC diagram against a MSC trace is done the same way as for the other
kinds of comparisons, except the diff type has to be set to ‘Property match’:

Note that the PSC diagram has to be the one specified in the ‘Prop. MSC’ field, which is
always the first one. If needed, the diagrams can be swapped with the arrow button on
the right side of the dialog. The same comparison options are provided as for basicMSC
and specification vs. trace comparisons, but they are less significant here, as a property
diagram is always partial.

Once validated, the propertymatches and violations are displayed in a similarway to the
display of differences in the other kinds of comparisons. Mostly the colors and the dif-

PragmaDev Process V3.1 Page 107

User manual

ference descriptions differ: each matched element in the property or the MSC diagram
will be displayed as green, and each unmatched one as red. The difference description
will be:

• ‘Property match’ if the property matches:

• ‘Violated property!’ if the property does not match.

• ‘Possibly violated property’ in some very specific cases where it is impossible to
tell if the property is matched or not. A typical example where this case happens
is the following:

A B

alt

e:m1

e:m2

r:m4

r:m3

If the trace contains a message m1 from A to B, followed neither by a message m2
from A to B, nor by a message m4 from B to A, there’s no way to know which part
of the alternative should have matched. But if it was the first part, the message

PragmaDev Process V3.1 Page 108

User manual

m2 is not there, so the property does not apply, and if it was the second one, the
requiredmessagem4 is not there either, so the property is violated. In this case, a
possible property violationwill be reported. Note that a property is not necessarily
violated if something does not match in it. Typically, an unmatched fail message
means the property is matched.

PragmaDev Process V3.1 Page 109

User manual

7 Explorer

The Explorer automatically explores all possible execution paths of themodel. The pos-
sible paths and their intermediate states build what is called a state space. There are
two interesting results for this feature:

• The size of the state space, that is basically the number of possible execution steps
in the model. If it is too high that means the model is complex and might not be
doing what is expected.

• Verify a property in order to make sure some scenario actually can not happen
whatever the scenario.

Please note OBP requires Java to be installed on the computer.

7.1 Architecture

The state space exploration is done with OBP (Observer Based Prover) tool developed
by ENSTA Bretagne research lab. To do so OBP relies on PragmaDev Executor. At each
step OBP asks the executor what are the possible paths of execution (what we call tran-
sitions). OBP will then try all possible paths and the executor will provide the resulting
state for each one. For each resulting state OBP will ask for the possible transitions
and so on. The key aspect here is that OBP does not execute the model, it relies on the
executor. This is quite unique as usually verification tools have their own semantic and
executor.

While exploring OBP can verify user defined properties defined with a PSC (Property
Sequence Chart) diagram. Internally the PSC is translated to a Büchi automaton and

PragmaDev Process V3.1 Page 110

User manual

sent to OBP. The Büchi automaton is based on what we call atomic properties of the
model. At each step of execution OBP asks the BPMN executor to evaluate the atomic
properties to evaluate the overall Büchi automaton. While atomic properties are static
andusually boolean, theBüchi automaton can express quite complex sequence of events.

7.2 Properties

The properties are defined using the PSC format. For the time being only the following
features are supported in the PSC:

• e (regular message or task),

• r (required message or task),

• f (failed message or task),

• Alt in-line expression,

• Strict operator.

Please refer to "PSC-specific normal, required and failed message syntax" on page 81
and "Main symbols" on page 82 for more information.

7.3 Launch an exploration

The Explorer is launched from the editor windows with the following button:

The following window will then open:

The Basic exploration enables full state space exploration. Deadlock is a built-in prop-
erty that allows checking for any blocking state. A blocking state during exploration

PragmaDev Process V3.1 Page 111

User manual

means there are no further actions to be performed (i.e., enabling and disabling) even
though the process is not finished (terminated). The lines after Deadlock are all the
PSCs found in the project. A PSC defines a single property. OBP can only explore one
property at a time.

The following can be configured:

• OBP heartbeat

An exploration might take a substantial amount of time. For that reason, every
heartbeat, some status information is displayed in the exploration window. It is
possible to change the refresh value (in milliseconds) of the status information.

• Max active states per element

This is is the the upper limit for active states allowed for a given BPMN element
during exploration. For sequence flows, the limit is applied to active and ready
states together. This option is also used to address the issue of infinite configura-
tion that may be caused by complex looping paths for example.

• Call-activity definition

Exploration can be limited to certain scenarios by defining how a call-activity def-
inition is handled:

– consider : always step into call-activity (if possible) during exploration,

– do not consider : always step over call-activity during exploration.

• Black-box pool definition

Exploration can be limited to certain scenarios by defining how a black-box pool
definition is handled:

– consider : always load (if possible) black-box pool definition during explo-
ration,

– do not consider : never load black-box pool definition during exploration.

• Run OBP in graphical mode

This is an advanced feature that allows more in depth analysis of the exploration
state-space via the OBP GUI tool. More information on the tool ca be found at
http://www.obpcdl.org. The Java SE Runtime Environment 8 (https://www.
oracle.com/java/technologies/javase-jre8-downloads.html) must be in-
stalled to run OBP in graphical mode.

Once the exploration is launched, the following window will show what the status is:

PragmaDev Process V3.1 Page 112

http://www.obpcdl.org
https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.oracle.com/java/technologies/javase-jre8-downloads.html

User manual

The dialog shows the progress of the exploration:

• Nb fired transitions is the number of executed transitions in the model since the
beginning of the exploration;

• Configurations is the number of distinct system states the exploration has seen
so far;

• Coverage is the percentage of symbols executed at least one during the explo-
ration compared to the total number of symbols in the explored model(s);

• Status indicates whether the exploration is running and still incomplete or if it’s
over;

• Result is the result for the exploration when applicable.

Since exploration can take quite some CPU and memory, it is possible to pause the

exploration with the Pause button:

The exploration can then be resumed or paused again:

It is also possible to abort the exploration, for example in the case where it starts tak-
ing too much time or resources for the explored model, which probably means there

PragmaDev Process V3.1 Page 113

User manual

is something wrong with the model itself. This is done via the Stop button: . The
progress window will then show the status "ABORTED":

Note that the exploration cannot be resumed. However, it is possible to extract the
model coverage to see how far the exploration went.

A completion status will be indicated at the end of the exploration in the "OBP explo-
ration status" field:

7.4 Result analysis

7.4.1 Full state space exploration

The full state space exploration does not verify any property, it is only a full exploration
of all the possible configurations of the model. At the end of the exploration, the only
valuable information is the number of configurations that have been explored. In the
example below:

PragmaDev Process V3.1 Page 114

User manual

1577 different configurations have been explored. This has to be compared to themodel
complexity to find out if that result is too high or normal. A simple plain sequence is
usually less than a hundred configurations. If it is too high, there is probably a mis-
construct in the model. But if there are messages exchanged in loops in the model the
number of configurations can go way up a thousand.

7.4.2 Uncovered elements

The Show uncovered elements button may be used to obtain coverage information
when exploration is complete: all symbols in the model will be presented in a tree with
the associated coverage information. Since the number of times the symbol was hit is
not relevant for an exploration, only a covered / uncovered indicator will be displayed
for each symbol:

PragmaDev Process V3.1 Page 115

User manual

All non covered elements will be automatically marked in the editor as described in
Highlight non-covered symbols.

The Quit button will stop the exploration and close the window.

7.4.3 Property verification

At the end of the exploration, the windowwill indicate if the property (Deadlock or user
defined with PSC) has been violated or not in the "Result" field. In the example it has
been violated quickly after starting the execution:

PragmaDev Process V3.1 Page 116

User manual

Pressing theDisplay counter example button will display the scenario that violated
the property in the editor:

An execution trace is also generated with all the execution steps:

PragmaDev Process V3.1 Page 117

User manual

The problem can then be fully analyzed and the model corrected.

PragmaDev Process V3.1 Page 118

User manual

8 Simulator

8.1 Principles

The objective of a simulation of BPMNmodels is to evaluate the time needed to perform
a given process, as well as its cost. For that, individual times and/or costs are defined on
the elements of the model, and the simulation will evaluate these times and cost in the
order of the process and compute the totals. To allow the simulation to be completely
automatic, BPMNelements that require a choice such as exclusive or inclusive gateways
can also define probabilities for each of their branches, so that the simulation can pick
one up as it goes. Times and costs of BPMN elements can be defined as fixed values (e.g
a task lasts 2 days, or costs 300$) or as variant values following a distribution (e.g a task
last in average 30minutes, following a normal distribution with a standard deviation of
10 minutes). In addition to time and cost information, elements of the model can also
use resources that are shared between all processes. An element will not start until it
can get the resources it needs to run.

The simulation feature of PragmaDev Process relies on the BPSim standard1. This stan-
dard adds attributes to the elements in a BPMN model for their time and cost. It also
defines a way of setting the kind of results that must be produced in the end. BPSim
also defines the concept of resources, but PragmaDev Process extends this concept with
unique features, that are described in "Resources Editor" on page 157.

PragmaDev Process also adds the possibility to gather logs on individual executions
for simulation, that are not present in the BPSim standard. These allow to get precise
details on each individual execution to be able to generate a MSC trace if needed, for
example for executions that cause the total time to be bigger than expected.

BPSim relies on the definition of simulation scenarios, that include simulation attributes
for each element in the BPMN model. A simulation will then execute one or several of
these scenarios.

8.2 Simulation scenarios

Simulation scenarios can be added to a BPMN model from within the BPMN editor
window by selecting "Simulation scenarios..." in the "Simulation" menu:

1https://bpsim.org

PragmaDev Process V3.1 Page 119

https://bpsim.org

User manual

The following dialog is then displayed:

The list on the left side of the dialog shows the already defined simulation scenarios,
which are identified by their name. The name appearing in orange in the list is the
"active" scenario, which is the one for which the simulation attributes will be defined
for the elements in the model, as described below. The buttons under the list allow to
create a new scenario, optionally by copying another one, to delete the selected scenario
or to rename it.

The zone of the right side of the dialog lists the attributes of the scenario itself:

• Description is an informal textual description of the scenario.

• Version is an informal version number for the scenario.

• Author is the name of the scenario author.

• Created is the creation date for the scenario. It is set automatically and cannot be
modified.

PragmaDev Process V3.1 Page 120

User manual

• Modified is the date of lastmodification of the scenario. It is also set automatically
and cannot be modified.

• Duration is the duration of the scenario. After this duration, the scenario will be
ended and all processes that have not finished will be aborted.

• Start date/time is the starting date and time of the simulation.

• Nb replications is the number of replications for the scenario. For example, if
this number is set to 10, the scenario will be repeated 10 times with the same
parameters. Replications are also called instances of the scenario.

• Seed is the seed for the random number generator. This allows to create scenar-
ios that will always give the same results, even if the attributes rely on random
parameters based on distributions. Note that the random number generator will
be restartedwith this seed each time the scenario is started, but not between repli-
cations.

• Base time unit is the time unit to use for the timing attributes for the BPMN ele-
ments. Note that this unit applies only if the time is specified using a plain number
(integer or real). Times can also be specified via a duration that includes its own
time unit.

• Base currency unit is the currency unit to use for all costs defined in the simula-
tion parameters for BPMN elements.

• Generate / Execution logs indicates that the individual logs for each execution
must be generated with the final simulation results.See "Logs" on page 145 for
more details.

• Generate / Critical path heat map indicates the critical path will calculated and
stored for each replication. At the end of the simulation the resulting statistical
information can be displayed as a heat map. See "Critical path" on page 155 for
more details.

• Generate / Resource usage logs indicates that the logs for resource usage for each
activity must be generated with the simulation results. A log is generated for each
scenario replication and lists all the takes and releases of resources for each activ-
ity in the model. See "Resource logs" on page 151 for more details.

• Generate / Resource wait time heatmap indicates that a heatmap will be gener-
ated during simulation showing which activity has waited for the longest time in
average for its resources for the scenario. See "Resource wait time heatmap" on
page 153 for more details.

8.3 Simulation attributes

Simulation attributes define the parameters for a simulation for individual model ele-
ments. They are always associated to a scenario, and two scenarios will have a different
set of parameters for the model elements.

The simulation attributes can be displayed within the BPMN editor by right-clicking on
any model element and selecting Simulation properties... in the contextual menu:

PragmaDev Process V3.1 Page 121

User manual

This will display the simulation properties in the panel on the right side of the editor
window, listing all the simulation attributes:

The simulation attributes are called parameters, and are displayed in 4 groups:

• The time parameters allow to define the time spent in the element. Times are typ-
ically associated to tasks. There are several times defined by the BPSim standard,
that are described below in "Time parameters", on the following page.

• The cost parameters allow to define the cost for the element. Costs are typically
associated to tasks. There are also different kind of costs defined in the BPSim
standard, that are described below in "Cost parameters", on page 125.

• The control parameters allow to define how things are triggeredwithin themodel.
They define the number of process instances that will run within one replication

PragmaDev Process V3.1 Page 122

User manual

of a scenario, and the probabilities for gateway branches when they are needed.
Control parameters are described in "Control parameters", on page 126

• The resource parameters allow to specify which resources the selected element
needs to be able to run. Resources can only be associated to tasks. Resource
selection is described in "Resource parameters" on page 130.

The values for all the time, cost & control parameters may be defined by one of the
following:

• A fixed value of a type compatiblewith the parameter. Available types are booleans,
integers, floating point numbers (reals), strings, and special types named Date-
Time and Duration, which allow to specify dates & durations in ISO-8601 format.

• A value defined by a distribution, that will be computed randomly during the sim-
ulation. Available distribution types are: beta, binomial, Erlang, gamma, log nor-
mal, negative exponential, normal, Poisson, triangular, truncated normal, uni-
form and Weibull. Each distribution type has its own set of parameters.

If a parameter is defined via an integer, a real, or a distribution, its unit is the unit
defined in the scenario: base time unit for times, and base currency unit for costs.

Time, cost & control parameters also have associated result requests, which define
which kind of results will be included in the results file produced by the simulation.
They are described in detail in "Result requests" on page 129.

8.3.1 Time parameters

Time parameters are usually associated to tasks, and define the time spent in them.
BPSim defines 7 kinds of times:

• The transfer time is the time spent between the previous processing step and the
task;

• The queue time is the time between the moment when the token enters the task
and the moment when the task is ready;

• The wait time is the time between the moment when the task is ready and the
moment when it actually starts;

• The setup time is the time needed by the task to setup everything before actually
starting its work;

• The processing time is the time actually spent doing the task’s work;

• The validation time is the time spent checking the task’s work;

• The rework time is the time spent correcting or redoing the task’s work.

All of these times can be defined either via a fixed value, which can be an integer, a real
number or a duration, or via a distribution of values. Note that only duration values
include their own time units and are not based on the scenario’s base time unit.

All of these parameters do not have to be defined. If only the definition of the time spent
in the task needs to be defined, the time to use is the processing time.

In addition to the kinds above, BPSim also defines the following times, but they support
only result requests and cannot have an associated value:

PragmaDev Process V3.1 Page 123

User manual

• The lag time is the time spent before the task’s work actually starts. It is the sum
of the transfer time, the queue time & the wait time.

• The duration is the time spent actually doing the task’s work. It is the sum of the
setup time, the processing time, the validation time & the rework time.

• The elapsed time is the total time spent in the task. It is the sum of the lag time
and the duration, i.e the sum of all the times defined for the task.

Note that PragmaDev Process supports only the elapsed time.

There are 3 possibles forms for the time parameters displayed in a model element’s
simulation properties.

The first form is the following:

This form is used when no time parameters are defined for the element.

The second form is the following:

This form is used when only the processing time has a value. Here, its value is based on
a truncated normal distribution and it has no associated results requests.

PragmaDev Process V3.1 Page 124

User manual

The third form is the following:

This form must be used when any other time than the processing time has a value or a
results request.

Note that PragmaDev Process allows to define time parameters on call activities, which
is not allowed in theBPSimstandard. When such aparameter is defined, the call activity
can be considered just as a task, i.e that its definition will be ignored. In this case,
the time(s) used for the call activity for the scenario will be the time(s) defined in the
parameters, and not the times used in the process it calls. See the semantics of the load
definition option in "Control parameters" on the next page.

8.3.2 Cost parameters

Cost parameters are usually associated to tasks, anddefine the needed amount ofmoney
for them. BPSim defines 2 kinds of costs:

• The fixed cost is the fixed amount of money needed for the task;

• The unit cost is the amount of money needed for the task for each time unit spent
in it.

Both costs use the base currency unit defined in the scenario. Any task can have one of
these times defined, or both. The valid values for these parameters are integers, floating
point numbers or distribution-based. Both kinds support result requests, on individual
model elements or on a process as a whole.

The two forms for the cost parameters displayed in the simulation properties are:

PragmaDev Process V3.1 Page 125

User manual

when no cost parameter is defined for the element, and:

when one or both of the cost parameters are defined, or have an associated result re-
quest.

Note that just as for time parameters, PragmaDev Process allows to define cost param-
eters on call activities, which is not allowed by the BPSim standard. Just as for time
parameters, this means that the actual process called by the call activity will be ignored
and the cost associated to the call activity in the results will be the one defined in its
parameters.

8.3.3 Control parameters

Control parameters are associated either to events, to sequence flows attached to a gate-
way or to "black box" participants. The following kinds of control parameters are avail-
able:

• The inter-trigger timer can only be set on events; it defines the amount of time
between the event is triggered. Its value can be an integer, a floating point num-
ber, a duration, or distribution-based. Note that if this parameter does not have
a value, this means that the event is never triggered.

• The trigger count can only be set for events; it defines the maximum number
of times the event will be triggered during the simulation. Its value must be an
integer. If this parameter does not have a value, it means that there is no limit
and that the event will be triggered until the scenario ends.

• The probability can only be defined on sequence flows attached to a gateway. It
defines the probability that this sequence flow will be selected. Its value must
be an integer, a floating point number, or (rarely) distribution based. Note that
PragmaDev Process only supports probabilities expressed as reals between 0 and
1, or percentages between 0 and 100. Anything else will be considered as an error.

For exclusive gateways, not specifying any probability on outgoing sequence flows
means that each one of them has an equal chance of being selected. For inclusive
gateways, all probabilities must be specified. Note that since inclusive gateways
must have at least one outgoing sequence flow selected during simulation, the
computation of probabilities will be redone until at least one of the branches is
selected, unless the condition parameter is set (see below).

PragmaDev Process V3.1 Page 126

User manual

• The condition can only be defined on sequence flows attached to a gateway. Its
value is a boolean. Alone, it specifies that this sequence flow will either be always
selected if the value is true, or never if the value is false. If they are associated with
a probability in the context of an inclusive gateway, they are used as a "fallback"
if the probabilities computed during the simulation end up not selecting any of
the sequence flows. In this case, those triggered are the ones which have their
condition set to true.

• The load definition parameter is a PragmaDev Process extension2. It can only be
defined on:

– "black box" participants, i.e participant symbols having no symbol in them;

– call activities.

It is a boolean that specifies if the definition of the participant or call activity must
be loaded if it exists, or if it shouldn’t. In the case of call activities, it has ameaning
only if the call activity has time and/or cost parameters associated to it. In this
case, if loaddefinition is false, the call activitywill be "stepped over", and the times
& costs used in the simulationwill be those defined on the call activity itself; if load
definition is true, the process called by the call activity will actually be executed,
and the time & cost parameters defined on the call activity will be ignored.

• The message delay parameter is another PragmaDev Process extension3. It can
only be defined on message flows originating from "black box" partiticipants.

By default, i.e when this parameter is not set or 0, when the definition of a black-
box participant is not loaded and there is a message flow from this black box to a
task, the message is assumed to be sent as soon as the receiving task is executed.

The parameter introduces a delay between the time when the task becomes active
and the time the message is sent / received. It is usually a number specifying
the numer of time units for the delay, but it can also be a duration, or even a
distribution-based value.

All these parameters except load definition andmessage delay support result requests,
but in practice, only a count result request on the trigger count actually has any mean-
ing.

Control parameters will appear differently depending on which are defined and which
model element is selected:

This form is used when no control parameters are defined on the selected element.

2Internally, this parameter uses the condition parameter, which can be set neither on participants nor
on call activities according to the BPSim standard.

3Internally, this parameter uses the inter-trigger timer parameter, which cannot be set on message
flows according to the BPSim standard.

PragmaDev Process V3.1 Page 127

User manual

This form is used when the inter-trigger timer and/or the trigger count is defined on
the element, or when any of them has an associated result request. This will typically
be the case for events.

This form is used when the probability and/or the condition is defined on the element,
or when any of them has an associated result request. This will typically be the case for
outgoing sequence flows for a gateway.

This form is only used for call activities to define their load definition parameter. Note
that it is slightly different from the form used for participants, since call activities can
have other control parameters, such as inter-trigger timer and trigger count, since they
can start a process.

This form is only used for black box participants when its load definition parameter is
defined.

This form is used only for message flows originating from a black-box participant to
allow to define theirmessage delay parameter.

PragmaDev Process V3.1 Page 128

User manual

8.3.4 Result requests

Result requests define which kind of results will be included in the results file produced
by the simulation. They can include one or several of the following types:

• minwill include in the final results file theminimum value for the parameter; this
is typically used for times or costs;

• max will include in the final results file the maximum value for the parameter;
this is typically used for times or costs;

• meanwill include in the final results file the average value for the parameter; this
is typically used for times or costs;

• sum will include in the final results file the sum of all values for the parameter;
this is typically used for costs;

• count will include the number of times the parameter has been evaluated; this is
typically used for control parameters such as the trigger count.

Note that a parameter does not need to have a value defined to be able to request a result
for it. For example, a count result request can be put on the trigger count parameter for
a start event to include in the results the number of times its parent process has been
started, even if the trigger count parameter has no defined value.

Result requests are set on parameters by using the "Results" field that has an associated
menu with check options:

Result requests can also be associated to a process as a whole. In this case, they will in-
clude in the results the requested result types for the parameter value for the whole pro-
cess. Defining result requests on a process is done by selecting one symbol in the pro-
cess, displaying its simulation properties, and then press the "Parent process params"
button in the panel on the right side of the window. This opens the following dialog:

PragmaDev Process V3.1 Page 129

User manual

The fields use the same kind of menus as those for parameters on symbols.

Note that for processes, only the elapsed time is supported since any other kind of time
doesn’t have any meaning when several branches execute in parallel. The elapsed time
included in the results will be the total time spent in the process, considering paral-
lelism: if 2 branches execute in parallel, the time for them in the process will be the
time spent in the longest branch, not the sum of the 2 times.

8.3.5 Resource parameters

Resource parameters are associated to tasks, and define the resources needed by the
task to be able to run. There is actually only one resource parameter, which is a selec-
tion expression in the XPATH language (actually a very limited subset of this language).
PragmaDev Process supports specifying the resource selection via an XPATH expres-
sion, but also offers a simpler way of specifying which resources are needed for a task.

8.3.5.1 Basic resource selection

Theneeds in resources for a task can be expressed via a set of criteria by using the "basic"
option in the "Resource parameters" in the simulation parameters for the task:

Several lines defining a needed resource can be inserted with the "+" button:

• A specific resource can be selected via its name by using the "Select resource by
name" option:

Once the resource name has been selected the quantity of resources to select can
be entered, with an optional deviation. For example, a quantity set to 5 with a de-
viation of 2means that the task can runwith 3, 4, 5, 6 or 7 of these resources. Note
that the actual number of selected resources will have an impact on the running
time for the task.

• A resource can be selected by one of its roles. For the definition of roles for re-
sources, see "Resources Editor" on page 157. To do so, use the "Select resource by
role" option:

PragmaDev Process V3.1 Page 130

User manual

Once the role has been selected, the quantity of resources with this role can be
selected the same way as when selecting resources by name.

• A resource can be selected by the value for one of its capacities in a given role. For
the definition of capacities in roles, see "Resources Editor" on page 157. To do so,
use the "Select resource by capacity value" option:

Once the role & capacity have been selected, the value for the capacity can be
entered. It is not possible to specify a deviation in this case.

Once lines are entered, they can be removed by using the "-" button on the line. The
selector above the list of lines allows to specify how the lines are interpreted:

• If the selector states "Activity needs one resource set for EACH of the criteria", it
means that a set of resources matching each of the criteria specified in the lines
must be available for the activity to start. For example, if the lines specify one
resource with the role "Chef" and one resource with the type "Oven", the activity
needs one chef and one oven to run.

• If the selector states "Activity needs one resource set for ONE of the criteria", it
means that a set of resourcesmatching one of the criteria specified in the linemust
be available for the activity to start. In this case, the order of the line matters: if
a resource set is found that matches the criteria on the first line, the activity will
start with these resources; if not, and if a resource set is found that matches the
criteria on the second line, the activity will start with these resources. And so on,
until the last line is analyzed. Since the order matters, the lines can be reordered
by using the handles on the right side of the line:

8.3.5.2 Advanced resource selection (XPATH expression)

The selection of resources can also be expressed via a selection expression using a sub-
set of the XPATH language, with specific functions for actual resource selection. The

PragmaDev Process V3.1 Page 131

User manual

standard BPSim functions are supported, as well as extended versions of these func-
tions and specific functions allowing criteria for resource selection that do not exist in
BPSim.

Resource selection functions In a resource selection expression, the criteria for
resources are expressed via functions. There are 2 basic functions that are standardized
in BPSim, and 3 PragmaDev extensions:

• bpsim:getResource allows to select a resource by its name, and specifies the
quantity of this resource the activity needs. For example:

bpsim:getResource('Foo', 1)
specifies that the activity needs exactly one Foo to be able to run.

• bpsim:getResourceByRoles allows to select a resource by one or several role(s)
the resource has (see "Resources Editor" on page 157 for more details on resource
roles). For example:

bpsim:getResourceByRoles(['R1', 'R2'], 3)
specifies that 3 resources that have the role R1 and the role R2 are needed for the
activity to be able to run.

• pragmadev:getResource is the same function as bpsim:getResource, but ac-
cepts a thirs parameter that is a possible deviation for the number of selected
resources. For example:

pragmadev:getResource('Foo', 5, 2)
specifies that the activity needs 5 resources of type Foo to be able to start, plus or
minus 2. So the activity can start with 3, 4, 5, 6 or 7 resources of type Foo. This
will have an impact on the execution time of the activity: the ones specified in the
BPSim time parameters are those for the average number of resources (5 in the
example). If the activity gets less than the average, it will take longer to execute;
if it gets more, it will take shorter.

• pragmadev:getResourceByRoles is the same function asbpsim:getResourceByRoles
with the same additional deviation parameter. The deviation has the same effect
on the execution time as the one in pragmadev:getResource.

• pragmadev:getResourceByCapacities is a PragmaDev extension using the ca-
pacities defined for the roles and their values set for the resources with that role
(see "Resources Editor" on page 157). This function takes as arguments a list of
triplets (role name, capacity name, capacity value), each defining a constraint on
the value of a capacity for the resources to select. The semantics of the constraint
depends on whether the capacity is additive or not:

– If the capacity is not additive, all select resources must have a value for this
capacity that is greater than or equal to the value given in the constraints.

– If the capacity is additive, the sum of the capacity values of all selected re-
sources must be greater than or equal to the value given in the constraint.

For example, with the roles PeopleTransporationwith an additive capacity nbPeople
and the role Transportation with a non-additive capacity range (expressed in

PragmaDev Process V3.1 Page 132

User manual

km), an activity needing to transport 50 people on 100 km could express its needs
for resources with:

pragmadev:getResourceByCapacities([
('PeopleTransportation', 'nbPeople', 50),
('Transportation', 'range', 100)

])
Thismeans that the resources to selectmust have the sumof their value for nbPeople
greater than or equal to 50, and each of themmust have a value for the range ca-
pacity greater than or equal to 100.

Composition of resource selection Resource selections can be composed in two
ways:

• To specify that two sets of resources must both be available, the standard "union"
XPATH operator is used. For example:

bpsim:getResource('Foo', 1) union bpsim:getResource('Bar', 2)
specifies that the activity needs one Foo and two Bar’s to be able to run. The union
operator can also be written as "|".

• To specify that only one set of resources among a list is needed for the activity to
run, the standard BPSim function orResource can be used. For example:
bpsim:orResource([

bpsim:getResource('Foo', 1),
bpsim:getResource('Bar', 2)

])
means that if one Foo is available, the activity can start with it; if it’s not and two
Bar’s are available, then the activity can start using the two Bar’s; otherwise, the
activity waits until either one Foo or two Bar’s become available.

Compositions can be nested: an operand for the union or | operator can be a call to
bpsim:orResource, and a parameter of bpsim:orResource can be a union.

8.4 External BPSim data

The usual way to define BPSim parameters associated to the elements in the BPMN
model is via the editor, as explained above. However, there are cases where the BPSim
parameters associated to the elements in themodel is already defined in an external file
containing BPSim data only. In such a case, it is possible to load this data by using the
entry "Load external BPSim data..." in the "Simulation" menu:

PragmaDev Process V3.1 Page 133

User manual

This will display a standard "open file" dialog allowing to select the BPSim data to load.
The default extension for the file is ".bpsim".

Note that the verification of the consistency between the loaded BPSim data and the
elements in the model is minimal, so make sure that the BPSim parameters described
in the external file were actually created for the current BPMNmodel.

8.5 Running a simulation

8.5.1 Via the graphical user interface

Within PragmaDev Process, running a simulation is done by selecting "Launch simu-
lation..." in the "Simulation" menu of the BPMNmodel editor, or simply by clicking on
the button. This opens the simulation dialog:

PragmaDev Process V3.1 Page 134

User manual

The table lists the available simulation scenarios with their total number of replications.
By default, all scenarios are selected; if only some of the scenarios must be considered
for the simulation, they can be selected or deselected by control-clicking on them, and
ranges can be selected with shift-click. The "(De)select all" button can also be used to
select all scenarios or none of them.

The "Results file" field contains the name for the results file that will be produced. A
default value is computed automatically, but it can be changed via the "Change..." but-
ton.

Once everything is setup, the simulation can be run by clicking the button. While
the simulation runs, the current instance number as well as the number of terminated
processes are updated in the dialog:

PragmaDev Process V3.1 Page 135

User manual

The number of terminated processes are displayed in the 3 last columns:

• The one with the green check-mark displays the number of processes that termi-
nated normally (i.e when they reach all their end symbols);

• The next one displays the number of processes that had to be aborted because the
simulation reached its end, as specified in the duration scenario attribute;

• The last one displays the number of processes that had to be aborted because of
a deadlock: they didn’t reach all their end symbols, but at some point, nothing
could be done to continue their execution.

Note that only the processes that terminated normally are taken into account for the
final results; the other ones are considered as not significant since they never reached
their normal end.

While running, the simulationmay be paused with the button, or aborted with the
button; note that results are not saved for an aborted simulation. Once the simulation
is over, the "Save results" checkbox near the close button is automatically checked and
enabled. Closing the dialog with this checkbox checked saves the results; if the results
should be discarded, the checkbox can be unchecked before closing.

The results will appear in the project manager, as children of the BPMNmodel:

PragmaDev Process V3.1 Page 136

User manual

8.5.2 Via the command line interface

Simulating a BPMNmodel can also be done via a command line. The command line in-
terface for PragmaDev Process uses a single command called pragmaprocesscommand,
which accepts a sub-command, then the options and arguments for this sub-command.
The sub-command for a simulation is simulate, so simulating a model via the com-
mand line interface is done via:

pragmaprocesscommand simulate \
[-k] \
[-i] \
[-c <nr or cores>] \
[--itt-samples=<nr or samples>] \
[-s <name>,<name>,...] \
[-o <BPSim results file name>] \
[-p <project file name>] \
<BPMN model file name> [<BPSim data file name>]

The command arguments & options are the following:

• <BPMN model file name> is the nameof themodel to simulate. Itmust be present
in the command.

• <BPSim data file name> is an optional file name for the BPSim data to load
along with the BPMN model. If it is not specified, the BPSim data is supposed to
be present in the BPMN model file itself; if it is present and there is BPSim data
stored in the BPMNmodel, the BPSim data stored in themodel is ignored and the
data specified in the external BPSim file is used.

• If the -s option is present, it must be followed by a list of BPSim scenario names
separated by commas. In this case, only the scenarios with these names will be in-
cluded in the simulation. If the option is not specified, all scenarios are included.

PragmaDev Process V3.1 Page 137

User manual

• If the -o option is present, it must be followed by the name of the file where
the simulation results must be stored. The preferred extension for such a file is
.bpsim, and it should be included in the name. If this option is not present, a
default results file name will be used, built from the name of the model, the cur-
rent date and the current time. Note that in all cases, a directory with the same
name as the results file without its extension and followed by "-LOGS" will also be
created if any scenario specifies that logs should be created. This directory will
contain the CSV files for the simulation logs.

• If the -k option is present, activities will use the same set of resources during
their entire lifetime, i.e, from start to finish including suspensions and resumes
(see Executor preferences).

• If the -i option is present, the simulation paramaters on call-activities will be
ingored, hence the simulator will always step-into defined call-activities (see Ex-
ecutor preferences).

• If the -c option is present, it must be followed by the number of CPU cores to be
used for parallel simulation (see Executor preferences).

• If the --itt-samples is present, the value assigned to it will be used to set the
number of samples to check for non-zero inter-trigger-timer (see Executor pref-
erences). The default value is 100.

8.6 Simulation results

After running a simulation and storing its results in the project, results can be viewed
within the BPMN model editor. To load a set of simulation results, either open it from
the project manager, or open its parent model and select it in the "Load simulation
results" sub-menu of the "Simulation" menu. The BPMN model will be opened, and
the selected set of results loaded with it.

To see the results associated to an element, right-click on it and select "Simulation re-
sults..." in the contextual menu:

PragmaDev Process V3.1 Page 138

User manual

The simulation results will appear in the panel on the right side of the window:

At the top is displayed the name of the loaded simulation results file for reference. Un-
der it are 4 tabs:

• "Summary" displays a summary of the results as a graph;

• "Details" displays the individual results for each instance of all simulated scenar-
ios;

• "Logs" displays the individual logs for each run of each process in all simulated
scenarios;

• "Resources" displays the usage of resources for each scenario replication.

PragmaDev Process V3.1 Page 139

User manual

8.6.1 Summary

8.6.1.1 Graphs

The "Summary" tab displays a summary of the results as a graph. This graph displays
the results for all executions of the process within a scenario. For example, the max for
the processing time displayed above is the maximum value of the processing time for
the selected task among all the times it has been executed in the context of the scenario.
The displayed parameter can be selected using the menu for the "Parameter" field.

The graph can be a min/average/max graph as displayed above, which are used when
results for some of the parameters include a min, a mean and/or a max.

The graph can also be a simple bar graph:

This one is used for simple values such as those for results of type count or sum. Note
that for this kind of results, all the results for the scenario are added and the graph

PragmaDev Process V3.1 Page 140

User manual

displays the sum.

The checkbox ’Show values’ at the bottom of the graph allows to display the values in
the graph:

The displayed values may be approximate; the actual values can always be displayed as
a tool tip when hovering over the graph:

PragmaDev Process V3.1 Page 141

User manual

The button "Parent process results" above the graph allows to switch to the results re-
quested for the selected element’s parent process. To make clear that the displayed
graph is no more associated to the currently selected element, but to its parent process,
all symbols in the process are selected in the editor and the displayed graph is updated:

The results are displayed here with the values shown, and a tool tip showing the exact
value when hovering over an end of the graph. Note that the "Parent process results"
button is now grayed out. The displayed results are now those requested for the process.

Note that if both the fixed cost and the unit cost are included in the results, a "dummy"
parameter named "Cost: TOTAL"will be included in the available parameters to display
that will be the sum of the 2 costs.

8.6.1.2 Exporting

The results summary for all elements in the model can be exported to a CSV file, allow-
ing to open it with a spreadsheet application. This is done by selecting the entry "Export
simulation results summary..." in the "Simulation" menu while a set of simulation re-

PragmaDev Process V3.1 Page 142

User manual

sults is loaded. A dialog will then ask for the CSV file to save to, then export the results
summary.

The columns exported in the CSV file are:

• The internal identifier for the simulation scenario;

• The scenario name;

• The internal identifier for the element having the result;

• The name of the parameter for the result;

• And one column per result kind: minimum value, maximum value, mean (aver-
age) value, count (number of times the symbol was hit) & sum of values.

8.6.2 Details

The "Details" tab list all results for each instance of all simulated scenarios as a tree:

PragmaDev Process V3.1 Page 143

User manual

The results are sorted by element first: selected element, and its parent process. Under
it are listed the simulated scenarios, then the parameter set (time, cost and/or control
parameters), then the parameter. If the parameter level is expanded, all requested re-
sults will be displayed:

Here, a result request of type "count" has been set on the "trigger count" parameter for
the selected element. The individual counts for each instance of "TestScenario1" are
displayed, with the instance number and their value.

PragmaDev Process V3.1 Page 144

User manual

8.6.3 Logs

The "Logs" tab displays the information about all executions of processes in all instances
of all simulated scenarios, with their time and cost information if they were recorded:

There are two modes for the display of the logs: the global mode, and the selection
mode. The mode can be changed with the selector at the top of the tab:

• "Show totals: globally" will select the global mode;

• "Show totals: for selected element’s parent process"will select the selectionmode.

8.6.3.1 Global mode

In this mode, the first column gives the scenario name, the instance/replication num-
ber, and an index for the run of the processes within themodel. The number of runs will
depend on the inter-trigger timer and the trigger counts defined on the start symbols,
and on the scenario duration if it is defined.

PragmaDev Process V3.1 Page 145

User manual

The second column indicates how the processes have terminated:

• If the column is empty, the process has terminated normally;

• If the column contains a T, the processes had to be aborted because of a time-out,
typically because the duration of the scenario had been reached;

• If the column contains a D, the processes had to be aborted because one of them
ended up in a deadlock.

The third column contains the total time for all the processes, and the fourth the total
cost for all the processes.

The fifth & last column contains the actual log file for the process execution. This file al-
lows to generate aMSC trace for this particular execution, either by selecting the line in
the tree and clicking the "Generate MSC trace" button, or simply by double-clicking on
it. This will ask for a file to save theMSC trace, whichwill then be opened automatically:

Here, generating the trace for an execution where a deadlock happened actually shows
in the trace the deadlock: the "Clerk" process got stuck and didn’t go to completion.

PragmaDev Process V3.1 Page 146

User manual

8.6.3.2 Selection mode

This mode is mostly identical to the global mode, except the shown end cause, total
time and total cost are for the parent process of the selected element only. Note that
the times and costs will be available only if they were recorded in the simulation results
via a result request on the process.

For example, if this log is shown in global mode:

switching to selection mode will update the end cause to the one for the parent process
for the "Get request approval" task:

PragmaDev Process V3.1 Page 147

User manual

and selecting the "Study request" task will change the displayed information to the one
for its parent process:

PragmaDev Process V3.1 Page 148

User manual

Note that all information has changed: the end cause is now T, the process time is
shorter and its cost 0.

8.6.3.3 Log files

When logs are requested for a simulation scenario, all files for the logs will be created in
a directory named "<results file name>-LOGS", where <results file name> is the name
for the simulation results file without the .bpsim extension, and in the same parent
directory as the results file itself.

Two kinds of files are generated, both in CSV format:

• The logs summary file is always named logs.csv. Its columns are, in order:
– The name for the simulation scenario;

– The instance/replication number for the scenario;

– The index for the execution when the inter-trigger timer and trigger count
settings on processes indicate that several executions must be made;

– A space separated list of process identifiers for the end cause indicators;

– The end cause indicators for the processes in the previous column, in the
same order, space-separated too;

– A space separated list of process identifiers for the process times;

– The times for the processes in the previous column, in the same order, space-
separated too; note that a process will only appear if a result request is set
on its elapsed time in the simulation parameters;

PragmaDev Process V3.1 Page 149

User manual

– A space separated list of process identifiers for the process costs;

– The costs for the processes in the previous column, in the same order, space-
separated too; note that a process will only appear if a result request is set
on its fixed cost or its unit cost in the simulation parameters;

– The total time for all processes for this execution; this is the execution time
of the longest process. This information is always included, regardless of the
results requests defined on the processes;

– The total cost for all processes for this execution; this is the sum of the costs
of all processes. This information is always included, regardless of the results
requests defined on the processes;

– The name of the log file for this execution.

• The log files for individual executions. There are as many of those as there are
lines in the summary file. Each line in the file is an event that occurred during the
simulation. The columns in such a file are, in order:

– The timestamp for the event, in ISO-8601 format, including the date & time,
with milliseconds;

– An instance identifier for the diagram; this is to handle the case where the
samediagram is executed several times in parallel, typically via a call activity;

– The identifier for the symbol or link for the event;

– The identifier for the parent process for the symbol or link; note that this
will always be a top-level process: if the symbol or link is in a call activity,
the process will be the calling one, not the process called by the call activity;

– The lag time for the event if any; if this has a non-zero value, the line rep-
resents an activity that got suspended because the resources it needed were
not available;

– The duration for the event; if this has a non-zero value, the line represents
an activity that was actually running;

– The cost for the event;

– The new state for the symbol or link if any.

Note that all symbols are included, even those onwhich no state change can occur.
For example, a task that changes its state automatically depending on its incoming
sequence or message flows will appear in the log anyway, but without a new state.

PragmaDev Process V3.1 Page 150

User manual

8.6.4 Resource logs

The resource logs contain entries for each time an activity takes or releases resources
when it actually starts running, or when it ends. To activate the extraction of these logs,
the "Generate" / "Resource usage logs" check box must be checked in the scenario:

When showing the simulation results, these logs are analyzed and displayed in the 4th
tab of the "Simulation results" panel. For any replication can be displayed:

• An overview of the replication in terms of takes of releases of all resources;

• An average usage overviewof each resource for the replication and for the scenario
as a whole;

• A detailed usage of each resource during the replication.

The replication overview looks like follows:

PragmaDev Process V3.1 Page 151

User manual

In this graph, the time flows horizontally. For each resource is displayed a bar which
describeswhen the resource is taken and for how long. Hoveringwith themouse pointer
over a bar opens a tooltip displaying which activity took the resource, for which run and
diagram instance, and what quantity was taken.

The average usage overview looks like follows:

For each resource is displayed a bar showing its average usage during the replication
(blue bar), and a bar showing its average usage during the whole scenario (green bar).
These averages are computed using the number of taken resources, the time during
which they were taken and the number of available resources during the duration of
the replication or scenario.

PragmaDev Process V3.1 Page 152

User manual

The single resource usage graph looks like follows:

The orange bars show the number of available resources of this kind all along the dura-
tion of the replication. The blue bars show the number of taken resources of this kind.
Time flows hrizontally. On the left side of the graph is displayed the overall usage for
the resource for the replication and for the scenario as a whole. This bar is the same as
the one appearing for the resource in the averag usage overview.

8.6.5 Resource wait time heatmap

If the execution logs and the resource usage logs are extracted during a simulation,
PragmaDev Process is also able to generate a heat map showing the activities that have
waited the longest for the resources before they were able to actually start. This is en-
abled by checking the "Generate" / "Resource wait time heatmap" check box in the sce-
nario:

PragmaDev Process V3.1 Page 153

User manual

When this option is checked and the results for the simulation are opened, an addi-
tional heatmap will appear in the heatmap browser in themodel editor window, named
"<scenario name>: average activity resource wait time / replication (<time unit>)":

The scale in the lower right side shows the colors for the average wait times for each
activity, which expressed in the base time unit for the scenario. The "halos" around the
activities allow to identify which are the ones that had to wait the longest before they
could get the resources allowing them to start. Here, "Get to customer" had to wait
the longest (around 190 minutes in average for one replication), while the other tasks
hardly waited at all.

PragmaDev Process V3.1 Page 154

User manual

8.7 Critical path

8.7.1 Principles

In a business process the critical path is the sequence of activities that led to the actual
overall execution time with the least inactivity. The link from one activity to another
can be a sequence flow, a message flow, a signal or a timer. The analysis of the critical
path starts from the ending symbol. For each activity it finds the previous activity in
terms of execution time.

Each replication of a simulationhas a different critical path. At the end of the simulation
each activity has an associated percentage representing how statistically critical it is.

8.7.2 Configuration

In the Simulation scenarios window the "Generate" / "Critical path heatmap" checkbox
will activate the critical path information during the simulation.

8.7.3 Heat map

To display the critical path graphically as a heat map, open the simulation results and
a specific diagram. Click on the heat map tab on the right of the window and select the
desired scenario.

PragmaDev Process V3.1 Page 155

User manual

The color scale is displayed at the bottom right of the window. Each symbol has a col-
ored halo associated to its statistical value. A tool tip, when point to a halo, will show
the exact value for the symbol.

PragmaDev Process V3.1 Page 156

User manual

9 Resources Editor

9.1 Overview

Resources inPragmaDevProcess are based on theBPMN&BPSimconcept of resources,
but has been extended significantly. Resources do exist in BPMN but are fairly limited:
they have no graphical representation, and their association to activities is very simple:
an activity can be declared to need a given quantity of resources to be able to start, and
that’s all.

BPSim adds to that several features:

• It introduces the notion of role: resources can have roles, and activities can ask
not only for a given resource, but also for resources having a given role, or even
several roles.

• The link from an activity to its needed resources is much more flexible in BPSim,
as it is described via a selection expression, which allows a lot more possibilities
than what BPMN offers.

• BPSim allows activities to have several possible sets of resources associated to
them, only one of which is needed for the activity to be able to start. This is done
via a specific function in the selection expression.

• BPSimoffers an advancedmechanism for the availability of the various resources:
to each resource can be associated a set of quantities with associated calendars,
defining how many of these resources are available at a given date and time.

PragmaDev Process supports everything BPSim introduces, but extends the concepts
even further:

• In expression specifying that an activity needs a given quantity of resources, Prag-
maDev Process allows to specify also a deviation. So for example, if an activity
specifies it needs 5 resources of a given type with a deviation of 2, it can actually
start with any number of these resources between 3 and 7. This also has an impact
on the time spent in the activity: the more resources it can get, the shorter it will
be.

• The concept of role is extended by specifying capacities for them. Capacities are
characteristics of the role which will have a specific value for each resource hav-
ing this role. For example, a role PeopleTransportation could have the capacities
NbTransportedPeople and Range. Each resource playing the role PeopleTrans-
portation will have a value for these capacities, which will of course be different
for each resource: a truck will be able able to transport more people than a heli-
copter for example, but might have a shorter range.

PragmaDev Process V3.1 Page 157

User manual

The selection expression for activities can select resources based on their capacity
values. For example, an activity could ask for enough resources to transport a
given number of people for a given distance, whatever these resources actually
are.

• Resources in BPSim are stored with the BPMN model. This can be a problem,
since within a given organization, the resources are likely to be fixed, and shared
between all the processes that can occur in this organization. To solve this issue,
PragmaDev Process stores the resources in a file separate from the model and
the BPSim data, which allows the resource definitions to be shared among any
number of models.

Resources with their roles, capacities and availability are defined in their own file and
via a specific editor, that is described in the following sections.

Note that the level of granularity at which resources are described is not enforced by
BPMN or BPSim. Some organizations will want to define resources very finely, for ex-
ample with each person being a resource, and assign roles to them defining what an
individual person can do. Other organizations will describe resource much less finely,
with a resource being a pool of people who have a given ability. So for example, if we
need resources that are software engineers:

• In the first case, there would be a role named SoftwareEngineer, and there would
be resources for individual people like Jack and John, each of them having the
role SoftwareEngineer.

• In the second case however, SoftwareEngineer would be a resource, with an asso-
ciated quantity which is the number of available software engineers in the orga-
nization (which can vary over time; see "Resource quantities" on page 162).

PragmaDev Process V3.1 Page 158

User manual

9.2 Resource definition files

A set of resource definitions can be added to a project the usual way, by clicking either
on the button to add a new one, or on the button to add an existing file. A standard
file dialog is displayed; the file type to select is "BPSim resource files", with the extension
.brsc:

Once selected, the resource definitions file is added to the project:

Double-clicking on the resource definitions file opens the resources editor.

PragmaDev Process V3.1 Page 159

User manual

9.3 “Roles” tab

If roles need to be defined for resources, they will be in the second tab of the resource
definitions editor:

Here, we have two roles, named "Transportation" and "PeopleTransportation". The list
on the left side allow to add new roles via the "+" button, to remove the selected one via
the "-" button, or to rename it via the "Rename..." button. Capacities are listed in the
zone on the right side.

A capacity can be additive, or non-additive. In the example here, the capacity "NbPeo-
ple" is additive: if we get two resources that can transport 50 people, we are able to
transport 100 people. But the capacity "Range" is not: if we get two "Transportation"
resources with a range of 200 km, the range is still 200 km and not 400.

Capacities can be added via the "+" button under the list. It will display the following
dialog:

Note that we define only the capacity name here; the values for the capacity will be
defined in resources having the corresponding role. Once a capacity has been defined,

PragmaDev Process V3.1 Page 160

User manual

the "Toggle additive" button under the list allows it to be turned into an additive one if
it’s not, or vice-versa.

9.4 “Resources” tab

The first tab in the resources editor allows to define the resource themselves:

The list on the left is the list of resources, with the usual "+" & "-" buttons to add a
new one or delete the selected one, and the "Rename..." button allowing to rename the
selected resource. The "+" button displays a dialog that also offers to duplicate the
selected resource if any:

If a resource is duplicated, all of its attributes, roles, capacity values and quantity rules
are duplicated in the new one.

The resource detail zone on the right side has three tabs: attributes, quantity & roles.

PragmaDev Process V3.1 Page 161

User manual

9.4.1 Resource attributes

There are two attributes for a resource, as displayed in the screenshot above:

• The "unit cost factor" is the factor to apply to the unit cost of the activity using
the resource to get the actual cost. This is to represent the fact that some resource
are more costly to use than others. If several resources are used by an activity,
the unit cost factor is computed from all the resources the activity uses. So for
example, if the activity uses one resource with a unit cost factor of 2, and three
resources with a unit cost factor of 0.75, the actual unit cost factor for the activity
will be (1 × 2 + 3 × 0.75) / 4 = 1.0625

• The "description" is just an informal textual description for the resource.

9.4.2 Resource quantities

The second tab in the resource details pane allows to display and define the available
quantity for the resource, which can vary over time:

The default view shows a graph with the available quantity over time, which flows hor-
izontally from left to right. The extent of the range can be configured with the menu
above the graph. Here, the graph displays a full year. To change the displayed range,
the following controls are available:

• The "<" and ">" buttons allow to move one range back or forward.

PragmaDev Process V3.1 Page 162

User manual

• The "Go to..." button allows to go directly to a date. It displays the following dia-
log:

The dialog allows to directly select a date, or to select the start date of any scenario
in anyBPMNmodel in the current project via the ’Scenario start’ entry. The extent
of the range can also be configured here; it is automatically set to the base time
unit of the scenario when a scenario start date is selected.

• Any subdivision displayed under the graph can also be "zoomed in": if the mouse
pointer hovers over one of these subdivision, it will change to indicate zooming is
available, and clicking will directly open the corresponding range. For example,
in the graph above, it is possible to zoom on the month of June:

Clicking will "zoom" on the month of June of the displayed year:

The start and end dates/times for the displayed range are shown under the graph.

PragmaDev Process V3.1 Page 163

User manual

Here, the quantity for the resource is 20 and does not vary over the year. To show
the rules defining how the quantity evolves or to change them, the "Edit > > >" button
switches to the rule list view:

The first rule is always the default one and has no associated calendar. It gives the base
quantity for the resource, which can be completed by other rules giving the quantities
for various periods of time, defined via a calendar. Tomodify the base quantity, double-
click on the rule, or select it and press the "Edit..." button under the list:

This is the editor used for all quantity rules, but since we’re editing the default rule, only
the quantity can be changed.

PragmaDev Process V3.1 Page 164

User manual

If a new rule is added via the "+" button under the list, the same dialog appear, but with
a lot more options:

The quantity for the resource appears in the "Quantity" field at the bottom of the dialog.
The other fields define when the resource will have this quantity. They are based on
the normalized notion of calendar, as defined in RFC 5545 (iCalendar specification -
https://icalendar.org/RFC-Specifications/iCalendar-RFC-5545).

• The top part defines the base period for the rule. It can either be a start date/time
and an end date/time, or a start date/time only (uncheck the box near the end
date), which means that the rule never ends.

• If the base period has a start date, it can be repeated at a given frequency, as
specified in the "Repeat" field. The repetition can be by seconds, minutes, hours,
days, weeks, months or years.

• The rest of the dialog depends on the chosen frequency:

– For a repetition by seconds, minutes, hours and days, the dialog looks like
follows:

The "Every" field defines the number of time units for the repetition. So
a repetition "By days" with "Every" set to 2 will repeat every 2 days. The

PragmaDev Process V3.1 Page 165

https://icalendar.org/RFC-Specifications/iCalendar-RFC-5545

User manual

"Ends" field defines when the repetition ends. The choices are either "After
occurence number", in which case a second field will appear:

This means that the rule will repeat 5 times, then stop repeating.

The other choice is "On date", in which case a date/time entry field will ap-
pear:

This means that the rule will repeat until it reaches the 31st of October, 2022
at midnight, then stop repeating.

The "Switch to advanced editor" button is described further in this section.

PragmaDev Process V3.1 Page 166

User manual

• For a repetition by week, another field will be displayed:

It allows to select on which days of the week the repetition will occur. The default
is to repeat only on the week day defined by the start date for the period, but other
days can be added.

PragmaDev Process V3.1 Page 167

User manual

• For a repetition by months, another field will be added:

It allows to define if the repetition is based on the day in the month, or on the day
of the week within the month.

• For repetition by years, another field will be added:

It allows to define if the repetition is based on the day in the month, or on the day
in the week within the month.

PragmaDev Process V3.1 Page 168

User manual

Whatever the repetition frequency is, there will always be a button "Switch to advanced
editor" that will allow to define more precisely how the repetitions will occur. Once
clicked, the dialog will look like follows:

This allows to enter all fields in the repetition rule as defined in RFC 5545. The descrip-
tion of all these fields is out of scope for thismanual; please refer to https://icalendar.org/iCalendar-
RFC-5545/3-3-10-recurrence-rule.html for more details.

PragmaDev Process V3.1 Page 169

https://icalendar.org/iCalendar-RFC-5545/3-3-10-recurrence-rule.html
https://icalendar.org/iCalendar-RFC-5545/3-3-10-recurrence-rule.html

User manual

Once several rules are defined, the graph is updated. For example, for a set of rules like
this:

defining a basic quantity of 5 dropping to 3 from the 1st to the 15th of each month, the
graph displayed for a whole year will look like this:

PragmaDev Process V3.1 Page 170

User manual

Note that if there are more than 1 rule in addition to the first default one, the ordering
is important. For example, in this set of rules:

PragmaDev Process V3.1 Page 171

User manual

the 3rd rule has priority over the 2nd one. So during August of every year, the 2nd rule
does not apply and the quantity is 1:

PragmaDev Process V3.1 Page 172

User manual

This is different for the following set of rules:

In this case, the rule repeating every month is after the rule repeating every year, so it
has priority, and the quantity during August will be 1 (2nd rule), except from the 1st to
the 15th where it will be 3 (3rd rule):

PragmaDev Process V3.1 Page 173

User manual

Since the order is important, the rules can be reordered with the up & down arrow
buttons appearing under the rule list on the right side.

PragmaDev Process V3.1 Page 174

User manual

9.4.3 Resource roles

The third and last tab in the resource details pane allow to define which roles the re-
source has, and define the values for the capacities defined in the role:

Here, the resource "Monocycle" has the roles "PeopleTransportation" & "Transporta-
tion". Since the role "PeopleTransportation" defines a capacity named "NbPeople", we
have to give a value for this capacity for the resource. Here, it is set to 1. The resource
also has the role "Tranbsportation" which defines other capacities:

PragmaDev Process V3.1 Page 175

User manual

Here, the resource has values for the capacities defined by the "Transportation" role:
"Range" is 25, "Payload" is 0 and "NbPeople" is 1.

These capacity values can be used to select resources, as described in "Resource param-
eters" on page 130.

For each role it has, a resource also defines a time factor. This time factor defines the
efficiency of the resource when it’s "playing" the role.

For example, we could have a role "Printer" that will be assigned to all resources repre-
senting individual printer. Now all printers are not the same in terms of printed pages
per minute: some will be able to do something pretty average, like 15 pages per minute;
older ones might only be able to print 5 pages per minute, and faster one could go up to
45 pages per minute.

The time factor defined for the role allows to take that into account. So an activity
that would need a printer would define its running time with an average printer, so
considering a number of pages per minute of 15. Then we could have the following
resources:

• "AveragePrinter" can do 15 pages per minute. Since it is the value considered for
the activities using a printer, its time factor for the "Printer" role would be 1.

• "OlderPrinter" can only do 5 pages per minute. So the time configured in the
activity will actually be the third of the actual time it will actually need if it uses
"OlderPrinter". So the time factor for "OlderPrinter" for the "Printer" role would
be 3.

• "FastPrinter" can do 45 pages per minute. So an activity using this printer would
actually be 3 times faster than the time configured for it. So the time factor for

PragmaDev Process V3.1 Page 176

User manual

"FastPrinter" for the "Printer" role would be 0.333.

Note that the case where an activity uses several resources with different time factors
is complex: depending on the kind of activity and on the kind of resources it uses, the
time actually spent in the activity could be the maximum time computed from any of
the resources it uses, or the time computed with the average of the time factors of the
resources it uses, or anything in between. The choice made today in this case in Prag-
maDev Process is to take the average of the time factors for all the resources an activity
uses. This might require to adjust the time factors to get a result that is the closest to
reality.

PragmaDev Process V3.1 Page 177

User manual

10 Glossary

Acronym Meaning

BPMN Business Process Model & Notation
MSC Message Sequence Chart
PSC Property Sequence Chart
OBP Observer Based Prover
BFS Breadth First Search
DFS Depth First Search

PragmaDev Process V3.1 Page 178

	Introduction
	Supported BPMN constructs
	Project manager
	Preferences
	General preferences
	Printing preferences
	Executor preferences
	Licensing preferences

	File manipulations
	Checking the models

	BPMN editor
	Symbols
	Full BPMN mode
	Simplified BPMN mode

	Hierarchy
	Pools with sticky lanes
	Link with MEGA HOPEX
	Editor
	Diagrams
	Selection modes
	Select only
	Select or edit

	Flow and successor creation using symbol hover buttons
	Symbol & link insertion keyboard shortcuts
	Re-select last tool
	Automatic sequence flow creation
	Handling broken segments
	Modifying symbol types
	Modifying link types
	Connecting Call activities
	Printing and exporting

	Heatmap
	File format
	Display

	Executor
	Underlying principles
	Controlling the executor
	Via the graphical user interface
	Via the command line interface

	Behavior
	Start
	Sequence flows
	Message flows
	Implicit resolution
	Explicit resolution

	Call activities
	Gateways
	Inclusive
	Exclusive
	Parallel
	Event

	Execution tree
	Coverage
	General information
	Highlight non-covered symbols

	Execution traces
	Recording
	Replay
	Single-trace execution
	Multi-trace execution

	MSC and PSC Editor
	Overview
	MSC & PSC reference guide
	General diagram format
	Links
	Message links
	PSC-specific normal, required and failed message syntax
	Sequence flow

	Main symbols
	Lifeline
	Lifeline components
	Collapsed lifelines
	Inline expressions
	Absolute times
	BPMN signals throws & catches (PragmaDev extension)
	Enabled and disabled gates (PragmaDev extension)
	Comments
	Texts

	MSC editor
	Specific tools
	Symbol creation
	Manipulating components in lifelines
	Big diagrams handling
	MSC symbol and link properties
	Message parameters display
	Conformance checking: diagram diff & property match
	Basic MSC diff: trace vs. trace, spec. vs. spec., …
	Spec vs. trace comparison
	Property match

	Explorer
	Architecture
	Properties
	Launch an exploration
	Result analysis
	Full state space exploration
	Uncovered elements
	Property verification

	Simulator
	Principles
	Simulation scenarios
	Simulation attributes
	Time parameters
	Cost parameters
	Control parameters
	Result requests
	Resource parameters
	Basic resource selection
	Advanced resource selection (XPATH expression)

	External BPSim data
	Running a simulation
	Via the graphical user interface
	Via the command line interface

	Simulation results
	Summary
	Graphs
	Exporting

	Details
	Logs
	Global mode
	Selection mode
	Log files

	Resource logs
	Resource wait time heatmap

	Critical path
	Principles
	Configuration
	Heat map

	Resources Editor
	Overview
	Resource definition files
	``Roles'' tab
	``Resources'' tab
	Resource attributes
	Resource quantities
	Resource roles

	Glossary

