
Contact: Rick Reed
TSE, UK

Tel: +44 153 948 8462
Email rickreed@tseng.co.uk

SDL-2010 Revised 2016

On the 29th April 2016, ITU-T approved a revision to SDL-2010 (Specification and Description
Language): ITU-T Recommendations Z.100 (04/16), Z.101 (04/16), Z.102 (04/16), Z.103 (04/16),
Z.104 (04/16), Z.105 (04/16), Z.106 (04/16) and Z.107 (04/16). The revision updates the previous
2011/12 version of SDL-2010. It consolidates the updates previously published in versions of the
Specification and Description Language implementer's guide: version 2.0.1 – Z.Imp100 (09/13),
and version 2.0.2 – Z.Imp100 (04/15). The Open Issues listed in the implementer's guide have been
considered and revised so that in the current Z.Imp100 (03/16) has an empty list of Open items.

A revision of the formal definition of the Specification and Description Language in Z.100 Annex F
was approved in January 2015 that is updated to bring it more in line with SDL-2010. However, it is
not yet fully aligned and as of May 2016 there is an ongoing work item for further work on Z.100
Annex F.

The following details the significant changes made to SDL-2010: minor defect corrections and
clarifications are omitted.

1 Object data
In the 2011/12 version of SDL-2010, object-oriented data was left for "further study". This study
was concluded in April 2012 with the issue of Z.107 (04/12) – Object oriented data in SDL-2010.
The April 2016 versions of Z.100 to Z.106 have therefore been updated to reference Z.107 for
object-oriented data.

Every value sort has a unique value denoted by null, which is only valid as an operand of an
equality expression or the right hand side expression of an assignment. To be valid in an equality
expression both sides of the expression have to be sort compatible and have a REF aggregation
kind. To be valid in an assignment, the left hand side of the assignment has to have a REF
aggregation kind. Otherwise null is invalid and raises the predefined exception InvalidReference.
There is a predefined literal operator for each value sort with the name Null that has null as its
result, with the consequence that null and Null can be used interchangeably.
When the left hand side of an assignment has a REF aggregation kind, the right hand side (normally
a sort compatible variable or field) is associated with the variable for the left hand side. If the right
hand side is "undefined" then the left hand side becomes "undefined". If the right hand side is null,
the left hand side becomes null. If the variable on the left hand side is subsequently accessed where
a PART aggregation is required, a copy of the value of the right hand side of the assignment is
made (except if the left hand side variable was "undefined" or null, in which case an exception is
raised).

2 C language binding
In October 2012 an amendment to Z.104 (12/11) was approved that replaced Annex C language
binding, that allows C programming language syntax to be used as an alternative to the native
SDL-2010 data language. This amendment is now consolidated into Z.104 (04/16).

- 2 -
SDL-2010 Revised 2016

3 Lexical rules for <equals sign> and <not equals sign>, equality abstract grammar
These lexical units ("=" and "/=") are no longer treated as an alternative of <infix operation names>
as this conflicted with their use as part of <equality expression>. They can still be used as quoted
operation names: for example "="(a, b) and therefore are added to <quoted operation name>.

It is not allowed to define a new operation with two parameters and an <operation name> that is
<quotation mark> <equals sign> <quotation mark> or <quotation mark> <not equals sign>
<quotation mark>.

To distinguish between equality expressions for the <equals sign> and <not equals sign>, the
abstract grammar is changed so that Equality-expression is either a Positive-equality-expression (for
<equals sign) or Negative-equality-expression (for <not equals sign).

4 Structure data type Make operator

The nullary Make operator is no longer defined by default.
If the structure data type is not a specialisation (that is, one that inherits from another structure data
type), and a there is no explicitly defined Make operator, there is a default Make operator with an
argument for each field of the structure (except optional fields or fields with default initialization).
Alternatively one or more Make operators can be explicitly specified, one of which could be a
nullary operator.

If the structure data is a specialisation, it inherits the Make operator (or operators) of the parent type.

5 For loop refinements
The <loop variable definition> syntax is extended to include an <aggregation kind> before the
<variable name> for the loop variable, and <finalization statement> is extended to allow
<compound statement> as an alternative to <statement>.

6 Octet encoding rules (OER) added
The language is extended to include OER (octet encoding rules) as an alternative to the previously
defined encoding rule names (such as BER).

7 General Input and Output
The language is extended with a notation to refer to the last signal input saved in an implicit signal
variable, which can then be used to output the signal. The advantages of this are: the values
received can be retrieved from the signal without explicitly storing them in variables, and the signal
can be simply output without change.

This does not require change to output, because <expression output> already allows the output
signal to be specified by an expression provided that expression has the sort of a choice data type
where each choice field name corresponds to an outgoing signal carried from the local agent by one
of the gates of the agent. The signal <imperative expression> is defined as an implicit variable that
has a choice data type that can hold any of signals that can be received by the agent. This choice
data type can be denoted by an <as interface> of the form as interface agent1, where agent1 is
the name of the agent. The signal variable is initialized as undefined, and updated when the In-
choice of an Input-node is denoted by signal.

- 3 -
SDL-2010 Revised 2016

8 Reset all timers
Two new short hand notations are added:

If t1 and t2 are defined as timers and there are the set statements:
timer t1, t2 (Integer);
set (1.0, t1);
set (2.0, t2(1));
set (3.0, t2(2));

The statement:
reset (t2 *);

resets both the timer t2(1) and the timer t2(2) and any other timer with the name t2.
The statement:

reset (t1 *);

resets the timer t1 and therefore has the same meaning as reset (t1).

The statement:
reset *;

resets all timers.

9 Access values of signals in the input port
The language is extended to provide a way of accessing the name and the parameters of a signal
instance in the input port before the signal instance has been received and without changing the
contents of the input port. It applies only to signal instance that are "available" (availability time
<=now). The signals in the input port are treated as a read-only string of values of the choice data
type corresponding to the valid input signal set. The choice data type has the same data type the
signal above.

The language is extended with the <imperative expression> signallist that is treated as a read-
only implicit variable that accesses the input port.

The syntax of <basic sort> is extended with an alternative <as signallist> that is denoted as
signallist. This represents the string sort of the of the signal instance values in the input port.

If the name of the agent is agent_name, it has an implicitly defined interface with the name
agent_name. This interface has the valid input signal set of the agent as its Signal-identifier-set.
There is a choice data type defined for the interface with a choice of sort for each distinct Signal-
definition identified by the Signal-identifier-set of the Interface-definition. Given that the name of
the agent is agent_name, the anonymous implicit name of this choice data type is denoted by "as
interface agent_name".
The signal instances in the input port are stored in order of arrival in the implicit read-only string
variable signallist. This has the data type:

value type AnonSignalString
 inherits String < as interface agent_name > (empty = emptystring)
endvalue type AnonSignalString;

where AnonSignalString is an anonymous unique name denoted by as signallist.

length(signallist) is the number of available signals (signal instances with availability time >
now are ignored) and has the value zero if there are no available signals in the input port.

signallist = empty if and only if there are no available signals in the input port.

- 4 -
SDL-2010 Revised 2016

first(signallist) is the first signal instance to be considered in a state, and has the same
meaning as signallist[1]. Whether this signal instance is consumed depends on whether for
the current state this signal saved, or whether there are inputs with higher priority.

signallist[n] where n is a Natural expression is the nth available signal in the input port – a
choice value.

signallist[n]!Present gives a literal that is the name of the nth available signal in the input
port and one of the literals for the anonymous data type with the field names of the choice sort as
interface, and can be used to make a decision based on the signal name.

Once the name of the nth signal in the input port has been determined, the parameters of the signal
can be extracted using a field name (if one was given in the signal definition) or field number. For
example:
signal signal1 (Pid, Integer);
signal signal2 (b2 Boolean, i2 Integer);
value type sig3struct { struct c3 Charstring; } endvalue type sig3struct;
signal signal3 struct sig3struct;
dcl agent1 Pid; dcl n Integer (>= 1) ;
dcl routeNumber2 Integer;
dcl sig3copy sig3struct;

Given the definitions above
if signallist[n]!Present= signal1 /* is it a signal1 signal */
then agent1 := signallist[n]!as signal signal1!1;
 /* yes, determined by PresentExtract() of the choice value,
 from the choice for signal1 – selected by <as signal>
 (must use <as signal> if signal1 not a unique signal name) -
 extract the first struct field (the Pid field) using <field number>,
 and assign the Pid value */
/* */
if signal2Present (signallist[n]) /* is it a signal2 signal */
then routeNumber2:= signallist[n].signal2!i2;
 /* yes, determined by testing the choice value for signal2
 from the choice for signal2 – selected by unique signal2
 (assumes signal2 is a unique field name) -
 extract the named i2 field of the struct value for the signal,
 and assign the Integer value */
/* */
if signal3Present (signallist[n]) /* is it a signal3 signal */
then sig3copy:= signallist[n]!signal3;
 /* yes, determined by testing the choice value for signal3
 assign the choice for signal3*/

As well as having a signal type and the actual parameters of the instance, a signal instance in the
input port has additional information associated with it: the sender Pid, the availability time (always
<= now), the signal priority and the arrival gate. None of these are accessible using Signal-
expression. In a particular application it is suggested to place this information in signal parameters
to make it available – probably the best way if ASN.1 and encoding is being used.

10 Simpler initialization of systems and dynamic routing
When a signal is output, where the signal is delivered is constrained by the communication paths
from the sending agent and further constrained by a <destination> and a <via path>. Typically there
are several agents to receive the signal according to the communication paths, possibly more than
one agent instance set and more than one process within a specific agent instance set. The
<destination> and <via path> are therefore important if the signal has to be received by a specific
agent. The destination identifies a specific agent instance to receive the signal by means of a pid

- 5 -
SDL-2010 Revised 2016

value denoted by an <expression0>. In some cases the pid value needed is simply available from
stored values of items such as sender or offspring. In other cases, particularly when initializing a
system or a transaction, the pid value needs to be derived from something else such as an
application equipment number or routing code, and the derivation of pid values from the other
factors needs to be set up when the agent instances are created.

The language is extended with a notation for the pid value of an agent instance of an agent that has
a static number of instances (assured by making the initial, maximum and minimum the same
number). When agent instances are created dynamically, offspring can be used.

When a signal is sent without a pid value <destination> to a process instance set or via a
communication path, the result is often that there is an arbitrary selection of the agent instance. In
this case, the issue is how to make the instance selection specific (or at least less arbitrary) to
control the dynamic routing.

Each agent instance has a unique Pid value: the agent instance pid value. To handle agent instance
Pid values in models, what usually has to be done is to rely on some tool provided mechanism, or
to dynamically record the agent instance Pid values that are allocated in some data store(s) within
the model.

The dynamic recording approach requires all processes to communicate with the data store(s) and
this is an issue with initializing the system. Real systems are often re-initialized to overcome error
situations, and the time taken for the system to restart should usually be as short as possible. In a
system with a large number of statically allocated agents, recording the agent instance Pid value in
the data store(s) could take a significant time, and it is probably best not to handle environment
signals until the data store(s) have been set up.

For the initial agent instances in a system, allocation of agent instance Pid values is able to done
before the system interpretation. In fact, like initial memory allocation for static data, allocation of
the initial agent instance Pid values can be done when the initial system image is generated, so that
restarting the system requires only the system to be reset to its initial state, which may only require
some dynamic data to be re-initialized.

In the definition of an agent, visibility restricts the agent to only agents at the same or higher level
or immediately contained agents. An agent or state machine at the system level does not have
visibility of agents within other agents at the system level. For a data store to be initialized with
agent instance values, the instances need to be visible. For initializing the data stores the normal
visibility rules need to be relaxed.

It is a requirement that each Pid value uniquely identifies one agent instance. Each block/process
agent instance is a member of an instance set directly contained within another block/process agent
instance or is a member of the system instance. Any particular instance set is either the system or is
identified by a list of agent instances hierarchically from the system until the instance set is
identified. All block/process instance set names have to be unique at each level. An agent instance
is identified in its agent instance set by name by an instance number within that set represented by a
Natural value.

The keyword system identifies the system instance. Other agent instance Pid values are denoted in
a hierarchical way from the system ignoring visibility rules. The denotations of agent instance Pid
values can be used anywhere in the model. The syntax is
<agent instance pid value> ::=
 system [< name>]
 [value < agent instance> endvalue
 | <left curly bracket> <agent instance> <right curly bracket>]

- 6 -
SDL-2010 Revised 2016

<agent instance> ::=
 { < agent instance> }*
 [block | process] <agent name>
 [<left square bracket> <Natural expression> <right square bracket>]

where <agent name> is an agent instance set name, and the value of the <Natural expression>
identifies the agent instance in the order of creation in the agent instance set.

The leftmost items in an <agent instance> list in <agent instance> are allowed to be omitted if the
the agent is otherwise unambiguous (similar to omitting the leftmost items in a qualifier).

If the optional bracketed <Natural expression> of an <agent instance>, this is the same as a value of
"1".

The syntax for <expression0> is extended to include <agent instance pid value>.

A pid variable can be initialized in a <variable definition> by a <constant expression>. A <constant
expression> is defined as a <constant expression0> "that does not contain any <active primary>, or
a <value returning procedure call>". If all the <Natural expression> items of the <agent instance>
items of an <agent instance pid value> are a constant expressions, the pid value is evaluated only
once when the system is initialized and is a <constant expression>.

An <agent instance pid value> is a pid value of the implicit pid sort for the type of the agent
instance set and is compatible with the predefined Pid sort.
For the system and each agent instance set where the minimum, maximum and initial number of
instances are the same ("static" instance sets) the number of instances never changes, and each
<agent instance pid value> represents a unique Pid value for a given <Natural expression> value.
If the agent instance set is not static, and an instance of set ceases to exist, the instance number for
the next and all subsequent agent instances are reduced by one. Therefore if myagent [2]
terminates, the agent instance pid values denoted by the (constant) expression system {myagent
[3]} would be the (dynamic) expression by system {myagent [i+2]} where i has the value 0.

10.1 Examples
Most initial agent instance sets will contain more than one agent instance, and therefore the agent
instance Pid values for an agent instance set need to be stored in a variable that can be indexed to
provide the different values. A suitable data type is:

value type PidString
 inherits String < Pid > (empty = emptystring)
endvalue type PidString;

Assume that the system directly contains an agent instance set named agent1 that has three initial
instances. The expression to initialize a PidString is illustrated for values for the three instances of
agent1:

dcl agent1Pidstring PidString:=
mkstring(system { agent1 [1] }) //
mkstring(system { agent1 [2] }) //
mkstring(system { agent1 [3] }) ;

An alternative data type in this case is:
value type Agent1String
 inherits String < agent1 /* implicit pid sort */ > (empty = emptystring)
endvalue type Agent1String;

Because agent1 is the name of the agent instance set, it is also the name of the pid sort for the agent
interface.

dcl agent1pids Agent1String:=
mkstring(system { agent1 [1] }) //

- 7 -
SDL-2010 Revised 2016

mkstring(system { agent1 [2] }) //
mkstring(system { agent1 [3] }) ;

If agent1 contains an agent instance set named agent11 with 4 initial instances that contains an
agent instance set named agent111 with 5 initial instances, there are at least 76 initial agent
instances (including the system, but ignoring any other instances directly contained by the system).
For the 4th instance of agent111 in the 3rd instance of agent11 in the 2nd instance of agent1 the Pid
value is denoted:

system { agent1 [2] agent11 [3] agent111 [4]}) ;

11 Routing to an instance of a visible agent
SDL-2010 currently allows a <destination> to be an <agent identifier>. If there is only one instance
of the agent this uniquely identifies the destination. But more typically there is more than one
instance of the agent. The language is extended to allow a Natural expression after the <agent
identifier> to select a particular instance.
<destination> ::=
 <pid expression0>
 | [system | block | process] <agent identifier> [<destination number>]
 | this

<destination number> ::=
 <left square bracket> <Natural expression0> <right square bracket>

The optional keyword (system, block or process) before an <agent identifier> shall match the agent
kind.

The agent instances are numbered consecutively from 1 when the destination is interpreted, in the
order in which the instances were created: this allows for changes in numbering due to instances
terminating. If the destination number is zero or greater than the number of instances in the set of
agent instances, the signal is discarded.

	1 Object data
	2 C language binding
	3 Lexical rules for <equals sign> and <not equals sign>, equality abstract grammar
	4 Structure data type Make operator
	5 For loop refinements
	6 Octet encoding rules (OER) added
	7 General Input and Output
	8 Reset all timers
	9 Access values of signals in the input port
	10 Simpler initialization of systems and dynamic routing
	10.1 Examples

	11 Routing to an instance of a visible agent

