
01/09/2007 Open License Society 1

Open License Society

www.OpenLicenseSociety.org
Unifying and systematic system development methologies

with trustworthy embedded components

Eric.Verhulst@OpenLicenseSociety.org

01/09/2007 Open License Society 2

OpenComRTOS:

An Ultra-Small Network Centric

Embedded RTOS Designed

Using Formal Modeling

Eric Verhulst and Gjalt de Jong

Open License Society

Leuven, Belgium

{eric.verhulst,gjalt.dejong}@OpenLicenseSociety.org

01/09/2007 Open License Society 3

Who is Open License Society?
• Privately funded R&D institute

• Leuven (BE), Berdyansk (UA)

• Industrial sponsors

• IWT project funding for OpenComRTOS

• Why: 70 % of all SE projects do not deliver

• Objectives
• Systematic & Unified Systems Engineering Methodology

• ‘Interacting Entities’ paradigm at all levels:

• OpenComRTOS as runtime environment (formally developed)

• Implies ‘Trustworthy Components’

• => Open License (source code + all design, test, …. docs)

• Focus:
• Embedded Systems:

• Constraints driven development

• Real-time, distributed, hardware & software, …

01/09/2007 Open License Society 4

01/09/2007 Open License Society 5

SE Process dependency graph
System Functionality

Physical System

ApplicationApplication

Embedded SWEmbedded SW

FirmwareFirmware
Compilers

& Tools
Compilers

& Tools
DocumentationDocumentation HardwareHardware

CPUCPU
Interrupt

controller
Interrupt

controller
MemoryMemory DocumentationDocumentation

Analog I/O
and digital logic
Analog I/O

and digital logic

ApplicationApplication

Embedded SWEmbedded SW

FirmwareFirmware
Compilers

& Tools
Compilers

& Tools
DocumentationDocumentation HardwareHardware

CPUCPU
Interrupt

controller
Interrupt

controller
MemoryMemory DocumentationDocumentation

Analog I/O
and digital logic
Analog I/O

and digital logic

Stakeholder
Requirements

System
Design

System
Specifications

Capabilities

Implement SW

Implement HW

Validation & Testing

Capabilities

Requirements fulfilled ?

01/09/2007 Open License Society 6

Unifying paradigm: Interacting Entities

01/09/2007 Open License Society 7

OpenComRTOS project objectives

• Funded R&D project (IWT, Flanders)
• Lancelot Research: management, commercialisation

• Open License Society: technology development

• University Gent (INTEC, Prof. Boute): formal modeling

• University Berdyansk: tools and formal validation

• Melexis: co-sponsor and first user (16bit uC)

• GUI tools:
• graphical modeling/development environment

• Goal:
• Develop Trustworthy distributed RTOS

• Follow OLS SE methodology

• Formal verification & analysis: formal modelling

• Scalable distributed RTOS

• Verify benefits and issues of using Formal Modeling

01/09/2007 Open License Society 8

Some requirements
• Targets:

• Single chip, tightly coupled: multi-core

• Multi-chip, tightly coupled: parallel processors on board

• Multi-boards, multi-rack: using backplane interconnects

• Distributed: using LAN and WAN

• Host node

• Programming models:
• “Interacting Entities”

• “Virtual Single Processor”:

• transparent for topology

• Supporting heterogenous targets

• Distributed real-time

• Safe, secure

• Small code size, low latency (=high performance)

01/09/2007 Open License Society 9

OpenComRTOS systems grammer
OpenComRTOS IS_DEFINED_BY

Configuration (1) // The root node of XML file

Configuration IS_DEFINED_BY // Nodes of configuration section

Parameters (1) AND // Attributes of the configuration section of XML file

SystemTasks (4) AND // Kernel, Idle, Rx or Tx

ApplicationTasks (1-N) AND

Ports (1-N) AND

Nodes (1-N) AND

Links (1-N)

Configuration HAS_ATTRIBUTES // Parameters

DataSize (1) AND // Packet data size (in bytes)

NodeIdSize (1) // Length of Node identifier (in bits)

SystemTask CAN_BE // Type of system task

KernelTask OR

IdleTask OR

RxTask OR

TxTask

Etc.

01/09/2007 Open License Society 10

L1 application view

01/09/2007 Open License Society 11

All RTOS Entities: variation on a theme

01/09/2007 Open License Society 12

Generic hub

Waiting lists “senders/receivers”

Synchronisation

Upon Synchronisation

Pending synchronisation

With resource entities

When buffering

01/09/2007 Open License Society 13

Example of Interaction diagram:
distributed mailbox

01/09/2007 Open License Society 14

Clean architecture gives small code

210499645323150Grand Total

10481220Total L1 services

184184L1 Resource List

232232L1 FIFO

104104L1 Resource

5454L1 Semaphore

7068L1 Event

44L1 Port

400574L1 Hub shared

132162L0 Port

L1L0L1L0

SP SMALLMP FULL

OpenComRTOS L1 code size figures (MLX16)

Smallest application: 1048 bytes program code and 198 bytes RAM (data)
(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)
Number of instructions : 605 instructions for one loop (= 2 x context switches,
2 x L0_SendPacket_W, 2 x L0_ReceivePacket_W)

01/09/2007 Open License Society 15

Results (ctd)
• Break-through results in well-known domain

• 100’s of RTOS with such support

• 15 years of experience, 3 generations of RTOS design

• Typically CPU dependent, use of assembler and async operation

• Small, scalable, distributed and maintainable code
• SP(L0): < 1000 machine instructions

• MP(L1): < 2000 - 5000 machine instructions

• Needs a few 100 bytes of data RAM

• Fully in ANSI-C, MISRA-C compliant

• Runs on MelexCM (16 bit) and Windows

• Scheduling algorithm can be improved to reduce worst-case
rescheduling latency and blocking time

• All RTOS Entities are variations of a generic « hub » object

• => less but faster code: 5 KBytes vs. 50 KBytes before

01/09/2007 Open License Society 16

Formal TLA models of OpenComRTOS entities

01/09/2007 Open License Society 17

TLA

• TLA (the Temporal
Logic of Actions)
is a logic for
specifying and
reasoning about
concurrent and
reactive systems.

01/09/2007 Open License Society 18

TLA modelling results

We modeled entities
of OpenComRTOS:

• Port
• Event
• Semaphore
• Resource
• Packet Pool
• Memory Pool
• FIFO
• Mailbox

01/09/2007 Open License Society 19

Port
Verified Properties:
• There are never more Tasks on the ready list

than there are Tasks in the system
• There are never more Tasks in the Port’s

waiting list then there are Tasks in the system
• All Tasks waiting on an Port, either waiting to

send a Packet, either waiting to receive a
Packet are of the same type in each waiting list

01/09/2007 Open License Society 20

Resource
Verified Properties:
• No Task waiting for an Resource can be ready
• Any Task that is ready cannot be in a waiting

condition
• When the resource is free, then no Task will be

waiting for it

01/09/2007 Open License Society 21

Packet Pool

Checking Properties:
• Packets from the Packet Pool can only be allocated once
• If a Packet has been allocated from the Pool, then it must be in a

Packet List of a Task and vice versa, if a Packet is not in any Task
Packet List then it must be in the Packet Pool.

• If we have any packet in the Packet Pool, then no Task will be
waiting for a Packet

01/09/2007 Open License Society 22

RTOS Metamodel

• Based on Interacting Entities Paradigm

• Application can be constructed from various
entities (kernel entities) and interactions between
them (kernel services).

• The Metamodel allows extensions to different sets
of kernel entities and services of other RTOSes.

• Expression of the Metamodel in XML format

01/09/2007 Open License Society 23

OpenComRTOS Entities’ Metamodel
= RTOS hub instances

01/09/2007 Open License Society 24

OpenComRTOSInteractions’
Metamodel = kernel services

01/09/2007 Open License Society 25

Stages of application development in
OpenComRTOSVE

1. Nodes (processors) topology definition

2. RTOS application structure definition

3. Tasks coding

4. Compiling and running

5. Tracing

01/09/2007 Open License Society 26

Nodes topology definition

01/09/2007 Open License Society 27

Application structure definition

01/09/2007 Open License Society 28

Task source coding

01/09/2007 Open License Society 29

Compiling and running

01/09/2007 Open License Society 30

Tracing

01/09/2007 Open License Society 31

OpenComRTOS Event Tracer

01/09/2007 Open License Society 32

Conclusion

• OpenComRTOS breaks new grounds for
distributed real-time processing:
• Developed using formal methods

• Based on packet switching

• Ultra-small, still same functionality

• Scalable and extensible by use of meta-model

• From multicore to widely distributed systems

• More info:
• www.OpenLicenseSociety.org

