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Who is Open License Society?
• Privately funded R&D institute

• Leuven (BE), Berdyansk (UA)

• Industrial sponsors

• IWT project funding for OpenComRTOS

• Why: 70 % of all SE projects do not deliver

• Objectives
• Systematic & Unified Systems Engineering Methodology

• ‘Interacting Entities’ paradigm at all levels:

• OpenComRTOS as runtime environment (formally developed)

• Implies ‘Trustworthy Components’

• => Open License (source code + all design, test, …. docs)

• Focus:
• Embedded Systems:

• Constraints driven development

• Real-time, distributed, hardware & software, …
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Unifying paradigm: Interacting Entities
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OpenComRTOS project objectives

• Funded R&D project (IWT, Flanders)
• Lancelot Research: management, commercialisation

• Open License Society: technology development

• University Gent (INTEC, Prof. Boute): formal modeling

• University Berdyansk: tools and formal validation

• Melexis: co-sponsor and first user (16bit uC)

• GUI tools: 
• graphical modeling/development environment

• Goal:
• Develop Trustworthy distributed RTOS

• Follow OLS SE methodology

• Formal verification & analysis: formal modelling

• Scalable distributed RTOS

• Verify benefits and issues of using Formal Modeling
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Some requirements
• Targets:

• Single chip, tightly coupled: multi-core

• Multi-chip, tightly coupled: parallel processors on board

• Multi-boards, multi-rack: using backplane interconnects

• Distributed: using LAN and WAN

• Host node

• Programming models:
• “Interacting Entities”

• “Virtual Single Processor”: 

• transparent for topology

• Supporting heterogenous targets

• Distributed real-time

• Safe, secure

• Small code size, low latency (=high performance)
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OpenComRTOS systems grammer
OpenComRTOS IS_DEFINED_BY

Configuration (1) // The root node of XML file

Configuration IS_DEFINED_BY // Nodes of configuration section

Parameters (1) AND // Attributes of the configuration section of XML file

SystemTasks (4) AND // Kernel, Idle, Rx or Tx

ApplicationTasks (1-N) AND

Ports (1-N) AND

Nodes (1-N) AND

Links (1-N)

Configuration HAS_ATTRIBUTES // Parameters

DataSize (1) AND // Packet data size (in bytes)

NodeIdSize (1) // Length of Node identifier (in bits)

SystemTask CAN_BE // Type of system task

KernelTask OR

IdleTask OR

RxTask OR

TxTask

Etc. 
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L1 application view
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All RTOS Entities: variation on a theme
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Generic hub 

Waiting lists “senders/receivers”

Synchronisation

Upon Synchronisation

Pending synchronisation

With resource entities

When buffering
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Example of Interaction diagram: 
distributed mailbox
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Clean architecture gives small code

210499645323150Grand Total 

10481220Total L1 services

184184L1 Resource List

232232L1 FIFO

104104L1 Resource
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7068L1 Event

44L1 Port

400574L1 Hub shared

132162L0 Port

L1L0L1L0

SP SMALLMP FULL 

OpenComRTOS L1 code size figures (MLX16)

Smallest application: 1048 bytes program code and 198 bytes RAM (data)
(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)
Number of instructions : 605 instructions for one loop (= 2 x context switches, 
2 x L0_SendPacket_W, 2 x L0_ReceivePacket_W)
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Results (ctd)
• Break-through results in well-known domain

• 100’s of RTOS with such support

• 15 years of experience, 3 generations of RTOS design

• Typically CPU dependent, use of assembler and async operation

• Small, scalable, distributed and maintainable code
• SP(L0): < 1000 machine instructions

• MP(L1): < 2000 - 5000 machine instructions

• Needs a few 100 bytes of data RAM

• Fully in ANSI-C, MISRA-C compliant

• Runs on MelexCM (16 bit) and Windows

• Scheduling algorithm can be improved to reduce worst-case 
rescheduling latency and blocking time

• All RTOS Entities are variations of a generic « hub » object

• => less but faster code: 5 KBytes vs. 50 KBytes before
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Formal TLA models of OpenComRTOS entities
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TLA

• TLA (the Temporal
Logic of Actions) 
is a logic for
specifying and
reasoning about
concurrent and
reactive systems.
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TLA modelling results

We modeled entities 
of OpenComRTOS:

• Port
• Event
• Semaphore
• Resource
• Packet Pool
• Memory Pool
• FIFO
• Mailbox
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Port
Verified Properties:
• There are never more Tasks on the ready list 

than there are Tasks in the system
• There are never more Tasks in the Port’s 

waiting list then there are Tasks in the system
• All Tasks waiting on an Port, either waiting to 

send a Packet, either waiting to receive a 
Packet are of the same type in each waiting list
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Resource
Verified Properties:
• No Task waiting for an Resource can be ready 
• Any Task that is ready cannot be in a waiting 

condition 
• When the resource is free, then no Task will be 

waiting for it
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Packet Pool

Checking Properties:
• Packets from the Packet Pool can only be allocated once
• If a Packet has been allocated from the Pool, then it must be in a 

Packet List of a Task and vice versa, if a Packet is not in any Task 
Packet List then it must be in the Packet Pool. 

• If we have any packet in the Packet Pool, then no Task will be 
waiting for a Packet
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RTOS Metamodel

• Based on Interacting Entities Paradigm

• Application can be constructed from various 
entities (kernel entities) and interactions between 
them (kernel services).

• The Metamodel allows extensions to different sets 
of kernel entities and services of other RTOSes.

• Expression of the Metamodel in XML format
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OpenComRTOS Entities’ Metamodel
= RTOS hub instances
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OpenComRTOSInteractions’
Metamodel = kernel services
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Stages of application development in 
OpenComRTOSVE

1. Nodes (processors) topology definition

2. RTOS application structure definition

3. Tasks coding

4. Compiling and running

5. Tracing 
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Nodes topology definition
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Application structure definition



01/09/2007 Open License Society 28

Task source coding



01/09/2007 Open License Society 29

Compiling and running
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Tracing
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OpenComRTOS Event Tracer
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Conclusion

• OpenComRTOS breaks new grounds for 
distributed real-time processing:
• Developed using formal methods

• Based on packet switching

• Ultra-small, still same functionality

• Scalable and extensible by use of meta-model

• From multicore to widely distributed systems

• More info:
• www.OpenLicenseSociety.org


