PRRIS-200

Z.109 Tutorial

Rick Reed
TSE Ltd

ITU Recommendation Z.109 - UML profile for SDL-2000.
Compliant UML 2 models can be mapped/used.

Rick Reed has been involved with ITU working on language standards since 1979. At that time he was working
with and represented GEC Telecommunications (later GPT, then Marconi Communications, now part of
Ericsson), which he had joined as student apprentice before going to university in 1967. At first the ITU
involvement was with the CHILL programming language related to his responsibility for software development
tools and including his own work on a compiler, but from the mid-1980's his primary area of interest in ITU
languages became the Z.100 Specification and Description Language. For this language Rick initially made a
major contribution to the data model of SDL-88.

In 1986 Rick became the technical project coordinator from a large EU project SPECS involving various
telecommunications companies including Alcatel, France Telecom, GPT, IBM and Philips concerned with the
specification and programming environment needed for communication software. This also involved collaboration
with other European projects in related software areas such as the required offline support platform and the online
run-time environment. It is largely as a result of this EU work that SDL-92 was created, making the language more
object oriented. The SPECS project continued into 1993. During this period Rick left GPT in 1991, and formed
TSE Ltd to sell his services as an independent consultant using his experience from GPT. He continued in the key
role in SPECS, including acting as the main editor for a book giving an overview of the SPEC project results
published by North-Holland.

In the late 1980's, as well as representing his employer at ITU, Rick took on the role of being head of the UK
representation in the ITU software languages and applications Study Group 10. After forming TSE Ltd in 1991, he
continued to represent the UK in this area. Subsequent to the merger of Study Group 10 and Study Group 17 in
2001, this role included the studies previously under Study Group 7: Data networks and open system
communications (including the currently important topic of system security).

During 1996 to 2000 Rick managed and contributed to the development of the SDL-2000. Since then he has
contributed to and edited the Z.104, Encoding of SDL data, and Z.109, SDL-2000 combined with UML. He is
currently ITU rapporteur for Q.11/17:Specification and Implementation Languages.

Overview

1. Why has Z.109 been created

2. How is the Z.109 UML profile defined
3. Whatis in the Z.109 UML profile

4. Use of 2.109

5. Conclusion

This tutorial assumes familiarity with:

OMG (Object Management Group) Unified Modeling Language (UML) at least
to the level of Class diagrams, Object diagrams, and State Machine diagrams;

The ITU-T Specification and Description Language at least to the level of
System diagrams, Block diagrams and Process diagrams with states with
inputs for transitions leading to other states.

Z.109 is an ITU-T standard that defines how these two languages should be used
together, by defining a UML profile that maps to SDL-2000 semantics so that UML
can be used in combination with SDL. The current Z.109 (06/07) SDL-2000 combined
with UML, replaces Z.109 (11/99) SDL combined with UML. The 1999 version was
based on UML1.4, and the 2007 version the profile was completely rewritten starting
from UML2.0, which was adopted by OMG in 2004 (and finalized in mid-2005).
However, the OMG had been working on UML2.0 for some time, and work on the
profile started in 2002. A work item was raised at ETSI in late 2002 on a UML profile
for Communicating Systems sufficiently related to the ITU profile that a revised Z.109
could be based on ETSI results. Work was done within a voluntary ETSI task force but
progress was slow due to a number of factors, several of which (such as illness and
participant company reorganizations) unrelated to the objectives, and a separate ITU-
T expert group started drafting the revised Z.109. In mid-2005 it was agreed that the
ETSI and ITU-T experts would join forces to produce a single profile document to
replace Z.109. Other experts from the SDL Forum membership contributed and the
work was largely completed by the end of 2006. At the April 2007 ITU meeting Z.109
was consented for the approval procedure with formal approval June 2007.

The objectives of this tutorial is to explain why there is a need for a UML profile for
SDL-2000, to explain the UML profiling technique used in Z.109, give a walk through
Z.109, explain how Z.109 will probably be used, and finally to consider where to go
from here. The main part is the walk through the Z.109 profile.

Why do we need profiles?

* ITU-T System Design Languages &
methodology

—ASN.1, MSC-2000, SDL-2000, TTCN-3,
URN, eODL, GDMO

* The completeness of UML

« Component engineering

The ITU-T has defined a number of System Design Languages that are used for
engineering, the main ones being :

ASN.1 for defining data items to be communicated;
MSC-2000 to describe interaction sequences;
SDL-2000 to specify and describe how objects behave;
TTCN-3 to specify and implement ‘black box’ tests.

These languages have been used together to engineer systems for some time, but to
a large extent these languages have been developed separately. Although the use of
ASN.1 with SDL-2000 and TTCN-3 is defined, there is (for example) no direct link with
MSC-2000. In reality links between the languages are defined by the tool sets used by
engineers or by custom engineering on individual projects. If each of the System
Design Languages is expressed as a UML profile, UML (and/or the metamodels) can
be used to integrate descriptions in the different System Design Languages.

Why not just use UML? The ITU-T System Design Languages have a long history and
the languages and associated tools have been evolving for four decades and are
therefore individually well suited to the application areas. There is a legacy of
investment in these languages both in terms of experience and products. Moreover
(as will be expanded later) UML2.0 is not complete and needs to be profiled in some
way before it is usable.

The profile for SDL-2000 enables components written using UML to be integrated with
components written in SDL-2000. It also provides a basis for the conversion of UML
model components into SDL-2000 model components that can then be further
elaborated as implementations.

O Activity @
set of documents I
— P information ﬂo; U M L, U RN? 7
SDL+
Methodology

classified information

ITU-T SDL+
methodology ,, ,

r 1
Cie
%iq
Ity
Requirements I .
capture eir ation
cie
tm draft designs
e:e
din
t
s roduct

criptions

TTCN-3

Test Speclfcatlo

tests

7?7

Validation

tormal SDL+ description

Implementation
y

__ testresults __ product validation result

Z.100 Supplement 1 gives a framework methodology for the use of ASN.1, MSC, SDL
and TTCN. The general framework of activities is shown in the diagram above.

The SDL+ methodology is not comprehensive: it does not (for example) cover
deployment issues, and is a little out-of-date because all the languages have evolved
since its publication in 1995. At the time UML did not exist, but the methodology
suggests to use OMT in the requirements collection phase. OMT was one of the main
object oriented notations that was unified in UML. The Class and Object diagrams of
UML are probably its most widely known and used feature. These are based on OMT.

The methodology assumes that the collected requirements are converted into some
classified information before conversion into SDL+ (ASN.1 + MSC-2000 + SDL-
2000) as a draft design or formal design. With today’s tools and notations the
classified information would probably be UML possibly supplemented by URN. The
draft design adds information and if the SDL+ languages have UML profiles the linking
or converting classified information to the draft design does not require a major
paradigm shift or recoding of material (thus avoiding a source of error).

The SDL+ methodology highlights some the co-ordination issues between ASN.1,
MSC-2000, SDL-2000 and TTCN-3. For example, ASN.1 enables sets of values to be
defined, but does not define any operations so that expressions such as x+1 do not
have any meaning in ASN.1. When ASN.1 is used with SDL, some operations are
implicitly defined (for example giving meaning to x+1), but further issues arise with
compatibility of values, adding operators that are not implicitly defined and
inheritance. MSC-2000 and TTCN-3 have some diagrams that are very similar, but
currently this languages have no common basis. UML profiles for these two
languages would make it easier to determine if the meanings of these diagrams are
the same or different.

Note: the implementation language (usually C, C++, Java ...) is largely irrelevant these days
because most code is generated automatically from the formal design.

UML2 completeness

To use the UML2 Superstructure needs
» The notation to be fully defined;
 Binding of notation to the metamodel;

 Binding of semantic variation points.

A “Semantic Variation Point” section explicitly
identifies the areas where the semantics are
intentionally under specified to provide leeway for
domain-specific refinements of the general UML
semantics (e.g., by using stereotypes and
profiles).

UML2 has various levels of compliance

The current OMG formal document for UML2 is Unified Modeling Language:
Superstructure version 2.1.1 formal/2007-02-05 - February 2007. The Z.109 profile
references this document. A version 2.2 is being progressed.

The specification of notation in UML2 is mixed.

For some constructs that are specified textually a specific BNF description is given.
But for much text that appears in a UML diagram will be actions or expressions in
some specific language supported by a tool and there are many instances of the
phrase “No specific notation” in the UML2 document. BNF is not always used, even
when it could be.

To provide a useful language for executable models, actions and expressions are
essential, and so extra ‘language specific’ notation needs to be introduced. The
constructs that are introduced need to be bound to the corresponding UML2
metamodel elements.

The binding of notation to the metamodel is not only needed for introduced notation,
but also for notation that is defined for UML2. Much of this is not defined explicitly,
either for the BNF or graphical syntax.

There is no equivalent of the BNF for graphical notation (that is no graphical meta
grammar). Instead graphical notation is given by example. Like the BNF, the binding
to the metamodel elements is often not defined explicitly, but examples do not have
element names that can imply binding to elements with similar names.

UML2 has a number of semantic variation points, which are deliberately undecided.

Finally there are different degrees of compliance: there are four levels with increasing
language coverage and at each level there is abstract syntax: concrete syntax and
diagram interchange compliance. Portability from one tool to another is not certain.

UML2 BNF (example)

<multiplicity-range> ::= [<lower> ‘..’] <upper>
<lower> ::= <integer> | <value-specification>
<upper> ::= ' | <value-specification>
But <value-specification> is not defined.
Could be Expression | OpaqueExpression

Expression:

“special notations permitted, including infix”
OpaqueExpression:

“text strings in particular languages”

The UML2.1.1 defines the notation for expression and opaque expression using the
following two paragraphs (respectively):

By default an expression with no operands is notated simply by its symbol,
with no quotes. An expression with operands is notated by its symbol,
followed by round parentheses containing its operands in order. In particular
contexts special notations may be permitted, including infix operators.

An opaque expression is displayed as text strings in particular languages. The
syntax of the strings are the responsibility of a tool and linguistic analyzers for
the languages.

So for an expression the bracketed notation is not specified syntactically and other
notations are allowed, and for an opaque expression no limitation or bracketing is
given for the text string which would cause syntactic ambiguities (for example if a
<lower> contained “..’).

The linking of the BNF syntax elements to the UML2 metamodel elements is usually
left to intuition. In the case of the multiplicity range of a multiplicity element, the
<lower> and <upper> are obviously related to lower attribute and upper attribute.
However, it turns out that <lower> and <upper> are actually the denotations for the
associated lower and upper value specifications and the respective attributes are
derived.

In this particular example, it is not too difficult to work out what the relationship
between the BNF notation and the metamodel elements should be. In other cases it is
less obvious, and in general for a particular concrete language used for expressions
and actions the binding needs to be defined.

Presentation Options

UMLZ2: Concrete syntax compliance does not
require compliance to any presentation options

Tools may omit or use by default

Portability assured by XMI support

Tools often have other presentations

Recognizably the same model?

There is no requirement to comply with presentation options. Some tools may
implement the defined options by default or at a user option, where other tools may do
things in a different (maybe very different way). The tool can still claim compliance to
the abstract syntax of UML.

If two tools comply to the same level of abstract syntax, it should be possible to move
the model from one tool to another by an information transfer. The correctly claim
compliance to the abstract syntax requires a tool can input and output XMI for that
level.

Similarly if two tool comply with the concrete syntax of UML at a level, they should be
able to interchange XMI. But this only applies to any basic defined concrete syntax,
not to presentation options and (as noted before) there are many areas where the
concrete syntax is poorly defined, or where the is “no specific notation”.

The reality is that there is strong incentive for a tool maker to be able read any XMI
output by another tool maker, but very little incentive (unless pressed by customers) to
provide good XMI from the tool that can be read by a competing tool. It is therefore no
surprise that the track record for XMl is not very good.

Even if it is possible to transfer a model from one UML tool to another UML tool, there
is still a question of whether the users will accept the transported model. Experience
from the ITU languages is that for user acceptance the criteria is the presentation
should be “recognizably the same”. Some variations in items such a fonts, icons,
symbol shapes will probably be tolerated, but if information is collapsed and hidden or
the layout or paging is changed users might not accept the presentation model as “the
same”, despite its formal meaning being identical.

UML2 semantic variation

Some examples of the many semantic variations:

» Compatibility of Redefined & Redefining elements
* Determining method invoked by call operation

» Ordering of the events in the input pool

Many (not all) associated with action semantics

The variation points are resolved by:

* Using a particular tool (in a particular configuration)

* Applying a profile that binds the variations

Execution requires the variations to be bound

In the three examples given:

RedefinableElement: Various degrees of compatibility between the redefined
element and the redefining element is concerned with the static semantics;

CallOperationAction: The mechanism for determining the method to be invoked as a
result of a call operation is unspecified, and could be required to be static or could
depend on dynamic semantics.

BehaviouredClassifier: The ordering of the events in the input pool is a semantic
variation, which is concerned with the dynamic semantics.

UML2 explains executables from different tools behave differently:

In case of tools that generate program code from models or those that are capable of
executing models, it is also useful to understand the level of support for the run-time
semantics described in the various “Semantics” subsections of the specification.
However, the presence of numerous variation points in these semantics (and the fact
that they are defined informally using natural language), make it impractical to define
this as a formal compliance type, since the number of possible combinations is very
large.

UML2 has to have the semantic variations bound to produce a language for
executable models or implementations. A tool that binds the points, implements a
language. A profile that binds the points, defines a language and a tool that supports
that profile implements the language.

There are numerous semantic variation points throughout the UML2 Superstructure
document at all levels of the language. It would be tedious to bind each semantic
variation when the feature including it is used, so it naturally leads to the situation
where profiles are used to bind some (or all) points before use.

UML action language

Concrete syntax from outside UML

Binding defines how objects behave

Libraries from ‘host’ language
Executable UML and SDL-2000
Z.109 = SDL-2000 action semantics

UML2 does not define either the complete concrete syntax or the dynamic semantics
for actions. To a large extent the concrete syntax is left to be instantiated by some
‘host’ action language (typically C, C++, Java or some domain specific implementation
language).

Although UML2 constrains some of the dynamic semantics for actions, it also leaves
many semantic variation points to be bound before a model can be executed. The
intention has always been that the UML2 Superstructure can be stereotyped and
profiled to a language of choice.

A language of choice usually includes a library of predefined data types, operations
and methods. Although these do not change the theoretical basis of the language for
actions, in practice the libraries available have a major impact on how the language is
used and become part of the language: particularly where these are part of a
standard, such as the Predefined package of SDL-2000.

The history of software engineering is of raising in levels of abstraction. UML that is
Executable is the next evolutionary step. Rather than translate an analysis product
into a design product and then write code, application developers can (with suitable
tools) use the same ‘language’ to model the abstract application and elaborate it into a
delivered product. If the action language is (for example) SDL-2000, it gives UML this
capability, while maintaining a actions sufficiently abstract so that they can be
emulated and validated with a virtual (SDL-2000) machine, or translated to C, C++ or
Java (as an intermediate language - seldom looked at), or to the machine code of the
target system.

The Z.109 profile provides SDL-2000 action semantics to UML, therefore acting as a
requirement specification for such a tool.

Subsets of UML2

UML2 - 13 diagrams types enterprise
— Structure(6): Class, Package ...
— Behavior(7): Sequence, State-machine ...

Give different views, overlap
Most used/supported

— Use-case, Sequence, Class, Package,
Composite-structure, State-machine

Executable models (Z.109)

— Class, Package, Composite-structure,
State-machine design computational

technology information

viewpoints

UML2 has 13 diagram types:

Class, Object, Package, Composite-structure, State-machine, Sequence,
Use-case, Communication, Interaction-overview, Activity, Component,
Deployment, Timing

Each of these is a view on a system, and in a tool they should give different views of a
single model of the system in a repository.

Past work has suggested five views of systems: enterprise, information, computational
design and technology. Though this is a bit simplistic, it does suggest that different
views are required at different stages during the engineering of a product. As
illustrated, this does not mean that different underlying models are required, or that
different notation are necessarily needed for different models.

Because the UML diagrams are different views of the same model, there tends to be
some redundancy of information between the various different diagrams. For
example, Sequence and communication diagrams both show the order in which
messages can occur. Often the preference of one diagram type over another depends
on the background of the user or the tools available.

UML2 adds very little to what can be expressed in ITU-T System Design Languages,
but has the advantages of integration and (some of it) being more widely known.

On the other hand, each of the ITU-T languages has a more limited domain of
application than the complete range of UML diagrams. A profile for an ITU-T
language, therefore includes only those parts of UML with diagrams concerned with
the same domain. For example, a profile for MSC-2000 would be concerned only with
sequence diagrams and the necessary other diagrams required to define items used
in the sequence diagrams.

10

Guidelines UML profile design Z.119
A UML profile defines
 Extra info associated with model elements
 Additional concepts (based on UML ones)
« Constraints on UML (limit model to map)
by a «profile» package with stereotypes
» Tagged values (attributes of stereotype)
» ‘extend’ an existing metaclass

package MyPackage

MyPackage <<apply>>

1

UseCaseDetails

The purpose of a UML profile is essentially the following:

. To define how to associate extra information with model elements in a UML
model;

+ To define additional concepts that are not defined by UML, but that can be
based on the existing UML concepts;

* To constrain UML so that the model can be mapped to the ITU T Language.

From a pragmatic point of view a profile is simply a UML package stereotyped with
keyword «profile». The «profile» package contains stereotypes that define:

+ Tagged values (the attributes of the stereotype);
+ What model element to extend (the ‘extends’ relation to a metaclass).

Formally in UML a profile is applied to a package using a dashed arrow notation with
the keyword 'apply' within guillemots as in the example where MyPackage has the
«profile» package UseCaseDetails. However, tools usually supply simpler ways of
applying profiles, such as the user selecting a name in a user interface.

11

Example: required stereotype

<<profile>> package s <<profile>> package UseCaseDetails
metaclass from ____...|.>
. >

appropriate metamodel <<metaclass>>

UML::UseCase <

extension definition 1.1
<<stereotype>>
stereotype definition UseCaseDef

Precondition : Charstring
ActionSequence : Charstring
Alternatives : Charstring
Postconidition : Charstring

tag definitions
(stereotype attributes)

In this example a stereotype called UseCaseDef is defined that extends the built-in
UML concept UseCase. The purpose of this is to add some extra items to all use
cases (the concept defined by UseCase). In this case the extras are Precondition,
ActionSequence, Alternatives and Postcondition attributes of the stereotype.

The stereotype extends the metaclass with multiplicity [1..1]. This is essential because
it will enforce that (from a users point of view) whenever a use case is created in a
package where the profile is applied, the use case will have the specified properties.
Moreover, if the stereotype has the same name as the metaclass (in this case
UseCase instead of UseCaseDef), in application models the name UseCase always
refers to the extended definition.

This is the mechanism that should be used in ITU T Language profiles whenever
there is a need to add extra information to the built-in UML concepts. It is the
approach taken in Z.109.

Occasionally the same UML concept has two (or more) alternative extensions, one of which
should be applied. In this case, the original UML concept should be extended with the
stereotype multiplicity [1..1] with the same name as the original concept, and this stereotype is
extended with the alternative extensions with multiplicity [0..1] with different names. The
stereotype of the original UML concept shall have an additional constraint that every extension
shall have the constraints and properties of one (and only one) of the alternative extensions

12

Example: new concept

<<profile>> package ImportantTriggerDetails

<<metaclass>>

UML::Trigger D —
0.1
Optionally applied
stereotype <<stereotype>>
ImportantTrigger

Importance: Integer

This example introduces a new concept called "ImportantTrigger".

From a user's point of view it is visible as a stereotype that optionally is applied to
triggers. The key point to notice is that the multiplicity of the extends relation is "0..1".
This means that in some cases a Trigger will be an ImportantTrigger, but not every
case.

Example Stereotype Definition

7.12 Property 7.12.3 Semantics

The stereotype Property extends the If isreadOnly is false and has an
metaclass Property with multiplicity aggregationKind that is none and
[1.1]. type is a <<PassiveClass>> Class
NOTE A property is an attribute that ... the <<Property>> Property is

corresponds to variables and agent mapped to a Variable-definition.

instance sets in SDL, or fields of a
structure. 7.12.4 Notation

7.12.1 Attributes UML standard syntax is used with
the following extensions. The

Stereotype attributes: property type <prop type> shall ...

- initialNumber: UnlimitedNatural [0..1] 7125 References
defines the initial number of instances ... SDL 9A

-referenceSort: Boolean determines the ’ gents . o
treatment of a variable or field as ... 12.3.1 Variable definition

7.12.2 Constraints
UML SS:

. Th tion shall not be shared.
© A28resalion sHa f not be stare 7.3.32 MultiplicityElement
+ Ifa <<Property>> Property has 7.3.44 Property

aggregation that is composite, ...

stereotype Property - names the Property Stereotype

multiplicity [1..1] - all Property items shall match the stereotype Property
initialNumber, referenceSort - attributes introduced in the stereotype
<<Property>> Property - a UML Property stereotyped with <<Property>>
<<PassiveClass>> Class - a UML Class stereotyped with <<PassiveClass>>
aggregation - an attribute (of a stereotype or a UML metaclass)
Variable-definition - Z.100 Abstract syntax element

NOTE: In main section of a stereotype: Informal definition of the purpose of the
stereotype

Attributes - attributes for extra information that is needed to capture the Z.100
concept, or ‘No additional attributes’.

Constraints - that are needed for the stereotype so that the UML model will be well
formed with respect to the Z.100 concept it is intended to capture. For example,
shared aggregation has no equivalent in SDL so is forbidden.

Semantics - Usually only specifies the mapping to Z.100 elements, and how the
element behaves is defined by Z.100 series standard. The mapping is often complex,
so that the mapping chosen may depend on attributes and relationships to other
values. One UML element, may map to more than one Z.100 element.

Notation - where UML already contains a sufficient notation ‘UML standard syntax is
used’, otherwise for text BNF is given or if graphical symbols are needed these are
described. How concrete syntax relates to the metamodel is defined.

References - the corresponding paragraphs of the UML2 Superstructure and

14

UML2 coverage

Included UML2 chapters Excluded UML2 chapters
» Classes .
» Composite Structures
» Common Behaviors

« Actions * Use Cases
* Activities .
» State Machines
Stereotyped elements
Non-empty properties * Profiles

Components

* Deployments

Interactions

* Auxiliary Constructs

Notation is guideline only

Meta-model elements defined in included chapters are included if they are specifically
mentioned in Z.109.

Any meta-model element of the UML Superstructure specification that is not
mentioned in Z.109 is not included in the profile.

A meta-model element that is generalization of one of the included meta-model
elements (that is, it is inherited) is included as part of the definition of the included
meta-model element. Other specializations of such a generalization are only included
if they are also specifically mentioned.

If an included meta-model element has a property that is allowed to be non-empty, the
meta-model element for the property is included. However, if the property is
constrained so that it is always empty, such a property is effectively deleted from the
model and therefore does not imply the meta-model element for the property is
included.

15

Names and name resolution

A name maps to
— a Name in definition context;
— an Identifier in use context.

Sometimes the gualifiedName is needed (<identifier>)
<name> ::=
<underline>+ <word> {<underline>+ <word>}* <underline>*
| <word> <underline>+
[<word>{<underline>+ <word>}* <underline>*]
| <decimal digit>* <letter> <alphanumeric>*
<word> ::=
<alphanumeric>+
<identifier> ::=
[<containing namespaces> | <name>
<containing namespaces> ::=
[<name separator>] { <name> <name separator> }+
<name separator> ::=
<colon> <colon>

A SDL-UML name must contain at least one underline or at least one letter. It is not
allowed to contain full stops. This enables it to be distinguished from an integer or real
number.

The <name separator> is a lexical unit, so that <colon> <colon> is always treated as
<name separator> outside the lexical context.

Any item that inherits from NamedElement and maps to SDL abstract syntax requiring
a Name (usually a definition context) shall have a name. Any such name shall have a
non-empty String value of characters derived from the syntax. No item shall have the
same Name as another item of the same entity kind in the same defining context.

Whenever a Name is required in the SDL abstract syntax (usually for the definition of
an item), the Name is mapped from the name of the appropriate item derived from
NamedElement. Whenever an Identifier is required in the SDL abstract syntax (usually
to identify to a defined item), the /dentifier is mapped from the name of the appropriate
item derived from NamedElement.

When a <name> occurs in syntax that defines a name, the qualifiedName is derived
from the defining context. Otherwise, a name shall be bound according the UML name
binding rules and if necessary the name is qualified by containing namespaces.

16

UML2 transform to SDL-2000

UML2 SDL-2000
N
System as map System as SDL-2000
Metamodel abstract grammar
elements) elements
name resolution$ f parse + check constraints
N |
System in SDL-UML | SDL-2000 Concrete |
notation grammar
N \ J
handle templatesf expand
shorthand
System in SDL-UML Note: An SDL-2000

concrete model is

notation & templates
never generated.

The language defined by the profile is called SDL-UML.

Template parameters are expanded according to UML expansion rules before
application of the profile. For example, ownedTemplateSignature, templateBinding,
owningParameter and templateParameter are expanded.

The concrete syntax of a system is parsed according to the SDL-UML concrete
grammar. Where the concrete grammar defines shorthand notations, these are
expanded during the parsing process before the corresponding meta-model items are
generated.

Names are resolved according the SDL-UML meta-model. The parsing of the
concrete grammar is therefore be done in parallel with parsing the concrete syntax
and generating the meta-model. If the concrete model does not conform to the
concrete grammar (syntax and static conditions for the concrete syntax, including the
use of names) of SDL-UML, the model is not valid.

The meta model is generated from the concrete model according to the relationship
between the concrete grammar and the meta model. If the model expressed as meta
model elements does not conform to the abstract grammar (meta-classes,
associations and constraints) of SDL-UML, the model is not valid. Conforming to the
meta-model rules of SDL-UML is a necessary (but not sufficient) condition for a model
to be a valid model.

The model expressed as SDL-UML meta-model elements is mapped to a model in the
abstract grammar of SDL-2000. How the system behaves is determined by the
semantics defined for the SDL abstract grammar. The static conditions of SDL-2000
are reflected in the constraints of the SDL-UML meta-model. However, if during
interpretation of the model expressed in the abstract grammar of SDL-2000, any
dynamic condition of SDL-2000 is not met, the model is not valid.

17

Structure
UML2 packages Metaclasses from UML2
- Communications - Class
- Connector
- Constructs - DataType
(from Infrastructure library) - Enumeration
- Dependencies - Interface
- Interfaces - Operation
- Package
- InternalStructures - Port
- Kernel - PrimitiveType
- P rt
- Ports .rope y
- Signal
- PrimitiveTypes - Timer

The structure of a system is defined mainly in class and composite structure
diagrams.

Communication is by signals passed from a port on one element to a port on another
element where the ports are joined by a connector.

Class (ActiveClass, PassiveClass)

» Class stereotype is either ActiveClass or PassiveClass.
» Multiple inheritance forbidden.

» Redefinitions must have the same name as original.

* Interfaces only realized by ports.

ActClass PassClass

Maps to Agent-type-definition Maps to Object-data-type-definition
Has attribute isConcurrent It shall have no

—if false the agent is a process .
—if true the agent is a block — ports or triggers or connectors

Behavior - State-machine-definition — classifier behavior

Owned — states in owned state machines
attribute maps to Variable-definition or (the behavior of owned operations)
Agent-definition in agent type; If there are owned attributes, the

port maps to a Gate of the agent type; ghyiact data type is a structure with
connector maps to internal Channel, the attribute names being the field
behavior is Composite-state-type- . L
definition, or Procedure-definition for names_‘ Each attribute type is either
methods of operations. a passive class or a DataType.

The concept of an active class (a class with isActive true) is separated from passive class (a
class with isActive false) to distinguish the classes for executable agents that map onto SDL
agent types.

ActiveClass

An ownedAttribute that is visible outside the <<ActiveClass>> Class (public visibility) and
that has a type that is a DataType or <<PassiveClass>> Class is the Variable-definition for an
exported variable and also maps to an implicit Signal-definition pair for accessing this
exported variable in the defining context of the Agent-type-definition.

If the <<ActiveClass>> Class has a classifierBehavior, it shall be a StateMachine. The
StateMachine that is the Behavior of the optional classifierBehavior maps to the State-
machine-definition of the Agent-type-definition. The name of the optional classifierBehavior is
mapped to the State-name of the State-machine-definition. The Composite-state-type-identifier
of this State-machine-definition identifies the Composite-state-type derived from the
StateMachine that is the classifierBehavior. The UML StateMachine maps to the behaviour of
an SDL composite state type, and the State-machine-definition references this behaviour.

Each Behavior of the ownedBehavior maps to an element of either the Composite-state-type-
definition-set or the Procedure-definition-set. If the owned Behavior is the method of an
Operation, it is an element of the Procedure-definition-set, otherwise it is an element of the
Composite-state-type-definition-set.

PassiveClass

An ownedBehavior maps to a Procedure-definition in the Procedure-definition-set in the
nearest enclosing scope that contains the Object-data-type-definition.

19

Connector

Maps to a Channel-definition.

There shall be an associated InformationFlow,
from which the Signal-identifier-set of the
Channel-path is derived.

A connector shall have 2 end properties that
end in ports, which are the channel gates.

Has a delay attribute.

p
m1:mycC1 m2:myC

The conveyed Informationltem set of each InformationFlow defines the Signal-identifier-set of
the Channel-path. 1f the Informationltem set is omitted then the Signal-identifier-set is
computed based on the realized and required interface of the attached Port. If the
InformationFlow conveys an Interface then the Signal-identifier-set is computed according to
the transformation rules of Z.100 (see Interface section).

The role of a ConnectorEnd that is part of the end property maps to an Originating-gate or
Destination-gate in each Channel-path. If the role corresponds to the source of the
InformationFlow for the Channel-path the role maps to an Originating-gate otherwise it maps
to a Destination-gate. The Gate-identifier is derived from the name of the Port given by the
role.

If the partWithPort is non-empty, Gate-identifier contains as its last path-name (before the
name of the gate) the name of the part identified with partWithPort.

20

DataType,
Primitive Type, Enumeration

Maps to Value-data-type-definition.
ownedAttribute shall have a PassiveClass or DataType.
If a DataType has an ownedAttribute it is a structure:
Each owned attribute name, names a field.
An ownedOperation maps to a Static-operation-signature.
An ownedBehaviour maps to a Procedure-definition
in the scope enclosing the Value-data-type-definition.
If it is an Enumeration
each owned literal defines a Literal-signature;
each owned operation a Static-operation-signature.
If it is a PrimitiveType maps to a predefined data type.

A <<DataType>> Datatype is a PrimitiveType (which captures the non-parameterized
predefined data types of SDL) or an Enumeration (which corresponds to types defined by a set
of literal names) or a value type (typically a structured data type, but could be simply a
collection of operations). If it is a value type with at least one ownedAttribute, it is a value
structure type (see also the definition of an object structure type by a <<PassiveClass>> Class
with an ownedAttribute set that is not empty). A value type without an ownedAttribute that is
neither a PrimitiveType nor an Enumeration is a collection of operations. If some of these
operations have a result of the type, these denote values of the type. For example, the basis of a
type for imaginary numbers could be a type called Imaginary with a operation
makeImaginary (Integer, Integer)->Imaginary
together with other appropriate operations
and makeImaginary (-1, 2) would denote a value of the type.

A data type cannot contain agent instance sets or variables. A data type with an
ownedAttribute is a value structure type and each ownedAttribute is field of the structure.

The ownedOperation items are mapped to the Static-operation-signature-set of the Value-data-
type-definition.

An ownedBehavior maps to a Procedure-definition in the Procedure-definition-set in the
nearest enclosing scope that contains the Value-data-type-definition.

A <<Datatype>> Datatype with an ownedAttribute set that is not empty represents a structure
and each ownedAttribute represents a field. An ownedAttribute maps to operations in the
Static-operation-signature-set in the SDL abstract syntax for the field operations. These
operations are determined and corresponding items implied in the SDL-UML model in the
same way as the field operations for a <<PassiveClass>> Class with an ownedAttribute set that
is not empty (see PassiveClass). If ownedOperation associations are defined, the defined
operation signatures are added to the Static-operation-signature-set. The contained Data-type-
definition-set, Syntype-definition-set and Exception-definition-set are empty.

21

Interface, Port, Signal (Timer)

Interface maps to Interface-definition.
ownedAttribute expanded as Z.100 remote variable
ownedOperation expanded as remote procedure
nestedClassifier shall be Signal

Maps to member of interface Signal-definition-set

Port maps to Gate-definition
requiredinterface maps Out-signal-identifier-set
providedinterface maps In-signal-identifier-set

Signal maps to Signal-definition
ownedAttribute corresponding Sort-reference-identifier

Timer is Signal subtype with default Duration
Can be be used in Set, Reset, Active

rea: Realnt

<<interface>>
L Reqlnt

sig1

my:P

prov: Provint

An interface defines public features that are used to communicate with an object. In
SDL-UML these are signals, remote variables and remotes procedures. Accesses to remote
variables and calls of remote procedures are signal exchanges in the SDL abstract grammar, so
the components of a SDL-UML interface map to signals in the corresponding Interface-
definition.

An SDL-UML port defines an SDL Gate. The required interfaces characterize the requests
from the classifier to its environment through the port and therefore define the outgoing signals
for the Gate. The provided interfaces of a port characterize requests to the classifier that are
permitted through the port and therefore define the incoming signals for the Gate.

A signal represents the type for communication message instances and maps to a Signal-
definition. A timer is a specialized signal, with an attribute for the default value of the time and
a mapping to an SDL Timer that gives additional behaviour. A timer can also be used in
expressions that require a timer.

22

Operation

In an Interface expands to signals (see Interface).
In an ActiveClass maps to Procedure-definition.
In a PassiveClass or Datatype is a operator and maps to:
— Operation-signature and
identified anonymous Procedure-definition in scope
of type
Each Procedure-formal-parameter and Result of the
Procedure-definition are derived in an obvious way from
each ownedParameter including its direction (in, inout,
out, return) and the type of the Operation.
The Behavior identified by the method property defines
the Procedure-graph, Data-type-definition-set, and
Variable-definition-set of the Procedure-definition.
The properties isQuery, bodyCondition, precondition and
postcondition are ignored.

An operation is a feature that determines how an object behaves as described by its method. If
the operation is contained in an agent (that is an <<ActiveClass>> Class), the method has to be
a state machine and maps to a procedure. An operation contained in an interface is treated as a
remote procedure. Otherwise, the operation has to be an activity and maps to an operation of
the SDL data type for the <<PassiveClass>> Class or <<DataType>> DataType that contains
the operation.

An <<Operation>> Operation directly contained in an <<ActiveClass>> Class is mapped to a
Procedure-definition. The name defines the Procedure-name.

An Operation directly contained in a <<PassiveClass>> Class or DataType is mapped to an
Operation-signature and an anonymous Procedure-definition identified by the Identifier of the
Operation-signature, in the same context as the data type of the passive class or data type. In
each ownedParameter that does not have a return direction, the type and multiplicity together
define (in order of the parameters) a Formal-argument of the Operation-signature with a type
determined in the same way as in a Property. The type of the Operation defines the Result of
the Operation-signature.

If the Operation maps to a Procedure-definition (named or anonymous), each ownedParameter
that does not have a return direction defines (in order) a Procedure-formal-parameter where
the name and type (including the multiplicity) of the ownedParameter define respectively the
Variable-name and the Sort-reference-identifier of the Parameter. The Sortreference-
identifier is determined in the same way as for a Property. The direction (in, inout, or out) of
each ownedParameter that does not have a return direction determines (respectively) if the
corresponding Procedure-formal-parameter is an In-parameter or Inout-parameter or Out-
parameter. The type of the Operation defines the Result of the Procedure-definition. The
Behavior identified by the method property defines the Procedure-graph, Data-type-definition-
set, and Variable-definition-set of the Procedure-definition.

23

Property

isreadOnly false and aggregationKind none and

type is <<PassiveClass>> Class or Interface or DataType,
maps to Variable-definition. Sort-identifier is:
no lowerValue, no upperValue: from name of type;
from anonymous parameterized sort with type = TtemSort
isOrdered false, isUnique false: Bag;
isOrdered false, isUnique true: Powerset;
isOrdered true: String
such that
lowerValue 0, upperValue *: identity of anonymous sort;

otherwise identity of anonymous parent sort of Syntype-definition
where lowerValue and upperValue define Range-condition.

isreadOnly true and type is<<PassiveClass>> Class or DataType,
is used as a synonym: defaultValue defines the Constant-expression.

The type is <<ActiveClass>> Class, maps to Agent-definition where
initialValue = Initial-number, upperValue = Maximum-number.

If isreadOnly is false and has an aggregationKind that is none and type is a <<PassiveClass>> Class or
an Interface or a DataType (which includes PrimitiveType and Enumeration), the <<Property>>
Property is mapped to a Variable-definition. The name defines the Variable-name. The defaultValue
defines the Constant-expression. The Sort-reference-identifier is the Sort-identifier of the sort derived
from the type property. The Sort-identifier is determined as follows:

» If there is no upperValue and no lowerValue, the name of the type maps to the Sort-identifier;

* Otherwise, the Sort-identifier identifies an anonymous sort formed from the SDL predefined Bag
(if isOrdered is false and isUnique is false) or Powerset (if isOrdered is false and isUnique is
true) or String (if isOrdered is true) datatype instantiated with the sort given by the type as the
ItemSort. The anonymous sort is a Value-data-type-definition or Syntype-definition in same
context as the Variable-definition. 1f the upperValue value is omitted or the lowerValue value is
zero and the upperValue value is unlimited (* in the concrete syntax), there are no size constraints
and the anonymous sort is a Value-data-type-definition with its components derived from the
instantiated predefined data type. Otherwise the lowerValue value and upperValue value map to a
Range-condition of the anonymous sort, which is a Syntype-definition. The Parent-sort-identifier
of this Syntype-definition is a reference to another anonymous sort that is the Value-data-type-
definition derived in the same way as the case with no size constraints.

If isreadOnly is true, the type is required to be either a DataType (which includes PrimitiveType and
Enumeration) or a <<PassiveClass>> Class. When isreadOnly is true, the Property is mapped to a
Constant-expression defined by the defaultValue each time the Property is used in an expression.

If the type is an <<ActiveClass>> Class, the <<Property>> Property is mapped to an Agent-definition.
The name defines the Agent-name. The type property defines the Agent-type-identifier that represents
the type in the SDL abstract syntax. The initialNumber defines the Initial-number. The upperValue
defines the Maximum-number. If the initialNumber is omitted the lowerValue defines the Initial-
number. If both the initialNumber and lowerValue are omitted the /nitial-number is 1.

24

Packages

A <<Package>> Package is mapped to a
Package-definition.

A <<Package>> Package is mapped to a Package-definition.
The name of the package maps to the Package-name of the Package-definition.

The elements of the ownedMember composition define the contents of the package, that is the
Package-definition-set, Data-type-definition-set, Syntype-definition-set, Signal-definition-set,
Agent-type-definition-set, Composite-state-type-definition-set and Procedure-definition-set.
Each ownedMember that is a nestedPackage maps to an element of the Package-definition-set
of the Package-definition. An ownedMember that is not a nestedPackage is mapped as defined
in other sections to a Data-type-definition, Syntype-definition, Signal-definition, Agent-type-
definition, Composite-state-type-definition or Procedure-definition element of the
corresponding set of the Package-definition.

The UML ElementImport and Packagelmport (which are not stereotyped in this profile) define
the import and visibility of elements of the package and define the name resolution of imported
package elements. The resolved items map to Name and Identifier items in the SDL abstract
syntax.

25

State Machines

Metaclasses from package BehaviorStateMachines:
FinalState no name in StateMachine of an ActiveClass = Stop-node, else
no name in StateMachine (not procedure) = Action-return-node,
else
non-empty name = Named-return-node with State-exit-point-name
Pseudostate initial in region for composite state Start-node
initial in region for procedure Procedure-start-node
deepHistory is mapped to a Nextstate-node
junction is mapped to a Free-action
choice is mapped to a Decision-node
entryPoint is mapped to a Start-state-node
exitPoint is mapped to a Named-return-node
terminate is mapped to a Stop-node
Region of Statemachine with specification = Procedure-graph
single of Statemachine w/o specification = Composite-state-graph
multiple of Statemachine w/o specification = State-partition
State is mapped to a State-node
StateMachine w/o specification maps to Composite-state-type-definition
with specification maps to Procedure-graph
Transition - -

When a FinalState is reached the containing graph completes. In SDL-UML a graph for a
procedure will complete with a <<Return>> ActivityFinalNode. In this case, there is no
mapping to the SDL abstract syntax for FinalState, because the return node terminates the
graph. A FinalState that is not in a procedure graph maps to an Action-return-node or Named-
return-node for the enclosing composite state.

A Pseudostate is used instead of a state before initial or state entry point transitions, when there
is a junction of transitions, when there is a decision to make a choice of transitions, when the
transition leads to a history nextstate, or after a transition to lead to a state exit point or
terminate the state graph. They allow more complex transitions between states to be built from
simpler, shorter transitions that end or start (or start and end) in a Pseudostate. They map to
start, next state (with history), decision, join and free action, return and stop nodes in the SDL
state transition graph.

A region contains states and transitions and is mapped to the definition of how a procedure or a
composite state behaves. For the composite state mapping of a StateMachine, a single region
maps to a Composite-state-graph, whereas two or more regions map to a State-aggregation-
node. A region in SDL-UML is always part of a StateMachine and is never part of a State,
because the region of a State is constrained to be empty.

A state represents a condition where an object is waiting for some condition to be fulfilled:
usually for an event to occur. A state in SDL-UML maps to an SDL state.

An SDL-UML StateMachine either maps to the graph of an SDL procedure or an SDL
composite state type. The two cases are distinguished by whether or not the StateMachine has
a specification. If it does then it is the procedure case, otherwise it is a composite state type.
Because there are two different mappings some constraints on StateMachine are dependent on
whether there is a specification or not.

26

Transition

With TransitionKind local expanded as * state.
AnyReceiveEvent trigger expanded as * input.
CallEvent trigger expanded as remote procedure call.
With Signal name NONE maps to Spontaneous-transition.
effect maps to Graph-node list of Transition of Spontaneous-transition
With other Signal name maps to Input-node where
effect maps to Graph-node list of Transition of Input-node
With empty trigger, empty guard maps to Connect-node where
effect maps to Graph-node list of Transition of Connect-node

With trigger and guard maps to Decision-node for guard
with false Decision-answer a Dash-nextstate without HISTORY and
effect maps to Graph-node list of Transition of true Decision-answer
Terminator of the Transition is in the case of a target
ConnectionPointReference: Named-nextstate
Pseudostate: a Terminator or Decision-node at the end of Transition

A transition is the part of a state transition graph that defines what happens when the object
goes from one graph vertex another. Each vertex is usually a state, but may be a pseudostate.
Signals are used to trigger transitions. Standard UML notation and semantics are used.

If the trigger event of a Transition is a SignalEvent and the name of the Signal is “none” or
“NONE” (case sensitive therefore excludes “None”), the Transition is mapped to a
Spontaneous-transition. The effect property maps to the Graph-node list of the Transition of
the Spontaneous-transition.

If the trigger event of a Transition is a SignalEvent and the name of the Signal is neither
“none” nor “NONE” (so it does not map to Spontaneous-transition), the Transition is mapped
to an Input-node. The qualifiedName of the Signal maps to the Signal-identifier of the Input-
node and for each <attr name> in the <assignment specification> the qualifiedName of the
attribute (with this name) of the context object owning the triggered behavior is mapped to the
corresponding (by order) Variable-identifier of the Input-node. The effect property maps to the
Graph-node list of the Transition of the Input-node.

A target that is a State maps to a Terminator of the Transition (mapped from the effect) where
Terminator is a Nextstate-node that is a Named-nextstate without Nextstate-parameters, and
where qualifiedName of the State maps to the State-name of the Named-nextstate.

A target that is a ConnectionPointReference maps to a Terminator of the Transition (mapped
from the effect) where this Terminator is a Nextstate-node that is a Named-nextstate with
Nextstate-parameters, and where the qualifiedName of the state property of the
ConnectionPointReference maps to the State-name of the Named-nextstate, and the
qualifiedName of the entry property Pseudostate of the ConnectionPointReference maps to
State-entry-point-name of the Nextstate-parameters.

A target property that is a Pseudostate maps to the last item of the Transition (a Terminator or
Decision-node) as defined in Pseudostate.

27

Actions and activities

Packages Included metaclasses
BasicActions Activity
BasicActivities ACtiVitVFinalNOde
BasicBehaviors AddStructuralFeatureValueAction

s AddVariableValueAction

CompleteActivities Callo tonAct
CompleteStructuredActivities a pera. on C.Ion
Fund talActiviti CreateObjectAction
un amefna c.|\./|'|es ConditionalNode
Intermed!ateAct!vmeS LoopNode
IntermediateActions OpaqueAction
StructuredActions SendSignalAction
StructuredActivities SequenceNode

Describe how the model behaves: the action control flow and handling of
value expressions and changing instance values.

An activity is used to describe how the model behaves, for example the control flow of actions in an operation body or
a transition. When invoked, each action takes zero or more inputs, usually modifies the state of the system in some
way such as a change of the values of an instance, and produces zero or more outputs. The values that are used by an
action are described by value specifications (see ValueSpecification), obtained from the output of actions or in ways
specific to the action. The UML specification contains a framework for dealing with actions, but does not provide
syntax. In the stereotypes below, the syntax is given for actions, and these actions are mapped to the UML framework.

An activity defines the effect of a transition or the body of an operation.

AddStructuralFeatureValueAction is used to define an assignment to structural features of a Class or other Classifier.
AddVariableValueAction is used to define assignment to local variables of compound statements. <<Break>>
OpaqueAction is a break action within a loop that terminates the loop. A call operation action maps to the call of a
procedure in the SDL abstract grammar. Every ConditionalNode is either a <<Decision>> ConditionalNode or an
<<If>> ConditionalNode. A <<Continue>> OpaqueAction represents a continue action within a loop that causes a
jump to the next iteration of the loop or termination of the loop if already in the last iteration. A create object action is

used to create instances of agents and store a reference to the created instance in a variable. An <<Empty>>

OpaqueAction represents an action that does nothing. A <<Decision>> ConditionalNode is used to define textual
switch statements and maps to a Decision-node in SDL. There is no graphical notation, but a PseudoState with kind

choice (which has no textual form) also maps to a Decision-node. An <<ExpressionAction>> OpaqueAction
represents an action that only contains an expression. A LoopNode stereotyped by <<For>> is represents a traditional
programming language for loop. An <<If>> ConditionalNode is used to define a textual if statement and maps to a
Decision-node in SDL. Every LoopNode is a <<For>> LoopNode or a <<While>> LoopNode. Every OpaqueAction is
one of the subtypes: <<Break>> OpaqueAction or <<Continue>> OpaqueAction or <<Empty>> OpaqueAction or
<<ExpressionAction>> OpaqueAction or <<ResetAction>> OpaqueAction or <<SetAction>> OpaqueAction. The
reset action cancels a timer and removes any corresponding timer signals. A return represents the action to

return from a procedure (in the SDL abstract grammar) to the point where the procedure was called. A

sequence node is a sequence of actions and is either a node of an activity or describes the body of a

compound node. A send signal action outputs a signal from the executing agent, optionally specifying the

target agent and the port used to send the signal. The set action gives a timer an expiry time. A stop

represents the action to terminate the enclosing <<ActiveClass>> Class instance (the enclosing agent). A

LoopNode stereotyped by <<While>> represents a traditional programming language while loop.

28

Value Specification

Metaclasses from Kernel package:

Expression, InstanceValue, Literalinteger, LiteralNull,
LiteralString, LiteralUnlimitedNatural, ValueSpecification.

Gives a concrete syntax for expressions (like Z.100).

Literals are defined for the basic types.

A ValueSpecification is an Expression or InstanceValue or
LiteralSpecification, and the mapping to the abstract
grammar is determined by these metaclasses.

<expression> ::=
<expression0>

| <range check expression>

<range check expression> ::=
<operand2> in type { <sort identifier> <constraint> | <sort identifier> }
<constraint> ::=
constants <left parenthesis> <range condition> <right parenthesis>
| <size constraint>
<size constraint> ::=
size <left parenthesis> <range condition> <right parenthesis>

And so on.

29

Lexical Rules and Predefined Data

* The lexical rules are basically as Z.100
— Some symbol change (e.g. assignment)
— Different treatment of names

* Predefined matches Z.100 Predefined

<lexical unit> ::=

NOTE: The syntax rules for <name>, <alphanumeric>, <letter>, <uppercase letter>,

<name>

<integer name>
<real name>
<character string>
<character>

<hex string>

<bit string>
<note>
<composite special>
<special>
<keyword>
<quoted name>

<lowercase letter>, and <decimal digit> are given in .
<integer name> ::=

<decimal digit>+

<real name> ::=

<integer name> <full stop> <integer name>
[{ e | E } [<hyphen> | <plus sign>] <integer name>]

<quoted name> ::=
<apostrophe> { <quoted name character><quoted name character>+
| <reverse solidus><any character except btnfr> } <apostrophe>
| <apostrophe> <apostrophe>

30

UML2

Use of Z.109

Z.109 > Z.100

31

Conclusions

What Z.109 does not cover
Other profiles
Implementations

Further work and the future

32

